3 research outputs found

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment

    No full text
    Coronavirus illness 2019 is a significant worldwide health danger that began with severe acute respiratory syndrome coronavirus two infections. It is the largest pandemic of our lifetime to date, affecting millions of people and crippling economies globally. There is currently no viable therapy for this devastating condition. The fast spread of SARS-CoV-2 underlines the critical need for favorable treatments to prevent SARS-CoV-2 infection and dissemination. Regulating the upstream cytokine release might be a possible method for COVID-19 therapy. We propose that more consideration be paid to the dysregulated IFN-I release in COVID-19 and that cGAS and STING be considered therapeutic targets for avoiding cytokine storms and as critical components in host antiviral defense mechanisms

    Investigating Effect of Rapamycin and Metformin on Angiogenesis in Hepatocellular Carcinoma Cell Line

    No full text
    Purpose: Human hepatocellular carcinoma is one of the most common causes of death in the world. Metformin and rapamycin may decrease the expression of VEGF protein and subsequently angiogenesis. The purpose of this study was to evaluate the effect of these two drugs on expression of VEGF protein and the cell proliferation in the hepatocellular carcinoma cell line (ATCC HB-8065). Methods: HepG2 was cultured in RPMI-1640 medium at 37°C for 48h as a pre-culture and then treated by different concentrations of metformin (0, 5, 10 and 20 mM) and rapamycin (0, 5, 10 and 20 nM) at different times (12, 24 and 48 h). Cell viability was assessed by the MTT assay. Total RNA was extracted by the Trizol reagent and VEGF gene expression was analyzed by quantitative real-time PCR and was calculated by 2–ΔCt method. The VEGF protein level was determined by Elisa assay. Finally, Apoptosis index was calculated by DAPI staining. Results: Metformin and rapamycin significantly decrease cancer cells viability (p<0.05). Rapamycin but not metformin decreases VEGF gene expression in HepG2 cells. Metformin and rapamycin significantly induce cell apoptosis in hepatocellular carcinoma (HCC) cells. Conclusion: Metformin and rapamycin have an anti-tumor effect on HCC. According to our data rapamycin might have an anti-angiogenesis effect via inhibition of VEGF expression. Our results provide an insight into future clinical strategies to improve chemotherapy outcomes in HCC
    corecore