10 research outputs found

    SUBMERGED PEDOLOGY: THE SOILS OF MINOR ISLANDS IN THE VENICE LAGOON

    Get PDF
    Minor islands of the Venice lagoon are part of a delicate ecosystem, with equilibrium that depends on multiple factors deriving from both the aqueous and the terrestrial compartment, and represent useful indicators of the lagoon ecosystem status. Over centuries, some islands emerged, some others disappeared, others are being submerged in consequence of sea level rise, or are dismantled by marine erosion. Ecological survey and soil sampling evidenced rather homogeneous environment and soil characters, likely due to the same genesis from HTM during centuries, and to environmental conditions such as moisture and brackish groundwater. Four of the examined soils are Inceptisols, while the others present limited horizon differentiation, and are Entisols. All the profiles reflect udic or aquic conditions, and some of them are submerged for most time. Most soils are moderately alkaline (7.9 250 g/kg); organic carbon content at surface is within the normal range (8 <OC g/kg< 12), while at depth it is low (< 8 g/kg). The soils of shallow sandbanks differ from those of the islands having neutral pH (6.6 17 g/kg) and carbonates. Moreover, the textural class is generally silty-loam with increasing clay content with depth. Currently, the soils examined present hydromorphic pedofeatures, which are the result of the most important pedogenic process in the lagoon. Alternating reduction/oxidation processes would increase as a consequence of sea level rise, determining reducing conditions at bottom, and conversely enhancing salt concentration uppermost, with negative consequences for both pedogenic evolution and vegetation survival

    Concentrations of potentially toxic elements and soil environmental quality evaluation of a typical Prosecco vineyard of the Veneto region (NE Italy)

    Get PDF
    Purpose The aim of this work was to assess the concentrations of potentially toxic elements and to evaluate the soil quality of a typical Prosecco Denomination of Controlled and Guaranteed Origin vineyard of the Veneto region, NE Italy. Materials and methods Soil samples and leaves of Taraxacum officinale and Vitis vinifera were collected during spring–summer 2014. Element determination (Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, V, and Zn) were performed with ICP-OES after microwave digestion of samples. Soil quality was assessed via the biological soil quality (BSQ-ar) index. Lipid peroxidation test was performed to evaluate the vegetation oxidative stress, based on malondialdehyde (MDA) content via spectrophotometer. Results and discussion High concentrations of Al,Mg, and P were identified in soil, while high contents of Al, Cu, Fe, and Zn were found in V. vinifera leaves. The high concentrations in soil are probably due to agricultural activities, whereas those in leaves are probably due to atmospheric deposition and repeated use of foliar sprays in viticulture. The bioconcentration factor showed an effective transport of Cu, P, and Zn, from soil to leaf. The BSQ-ar values registered were similar to those obtained in preserved soils; hence, the biological class (VI) of these soils is high. The MDA content in T. officinale and V. vinifera leaves was below the reference value for T. officinale (2.9 ± 0.2 μM), suggesting that the metal content did not stress the vegetation in the investigated site. Conclusions The MDA value for V. vinifera (1.1 ± 0.7 μM) could be adopted as another control value for soil quality, which in our case is of Bgood quality.^ Moreover, our results suggest that high concentrations of elements detected in the analyzed samples do not influence negatively the quality of soil, but a better agronomic management could improve soil quality in the studied area

    Assessment of total soil and plant elements in rice-based production systems in NE Italy

    No full text
    Macro- and micronutrients concentrations and PTEs contents in soils and plants (rice) fromthe rice district in the Venetian territory (NE Italy) have been determined by Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES), with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0–30 cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into the roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with high soil contamination by Li and TI. The total concentrations of most studied metals (Al, As, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, Sn, Sr, V, Zn) in the soil samples fell in the natural geochemical background concentration levels, even though the concentration levels of some of them (e.g. Sn) overcame the Italian threshold limits for green areas (DM 152/2006). Most elements are likely associated with the geochemistry of the parent material. Antimony and Ti contents in soils are positively correlated with soil pH, while As, Be, Fe, Li, Sb, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of strontium, soil metals are always correlated between variable couples. Heavy metals in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an excluder plant (i.e. metal in the roots b metal in soil) for Li, Sn, Tl. The results of multiple linear regression analysis showed that soil extractable P and total Ca played an important role in predicting annual grain yield of rice. The average translocation of metals from the soil to the root was found to be N1, irrespective of the essential/not essential function; conversely, only essential elements (Cu, Fe, Mn, Zn) are translocated rather easily from the roots to leaves (TF ≤ 1) via xylem, and very little are translocated to grains (TF ≪1). Rice plants were able to accumulate non essential metals in their tissues especially in the roots, but not in the edible part, and this could be useful for the restoration of contaminated sites with a very limited hazard for human population consuming rice crops

    Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    No full text
    Recently, the widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that soil enzyme activities varied with rotation systems and growth stages in paddy field. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of F-R), and chitinase activities in all rotations, while compared with drained soil, waterlogging (in month of June, the early period of waterlogging) significantly decreased (P<0.05) β-glucosidase, alkaline and acid phosphatases, leucine aminopeptidase (except of P-S-R), arylsulfatase, chitinases. Soil organic-C was positively correlated with acid and alkaline phosphatases, and arylsulfatase while ß-glucosidase, chitinases and leucine aminopeptidase were not significantly correlated to soil organic-C. Enzyme activities were always correlated among them

    Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    No full text
    Recently, the widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that soil enzyme activities varied with rotation systems and growth stages in paddy field. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of F-R), and chitinase activities in all rotations, while compared with drained soil, waterlogging (in month of June, the early period of waterlogging) significantly decreased (P<0.05) β-glucosidase, alkaline and acid phosphatases, leucine aminopeptidase (except of P-S-R), arylsulfatase, chitinases. Soil organic-C was positively correlated with acid and alkaline phosphatases, and arylsulfatase while ß-glucosidase, chitinases and leucine aminopeptidase were not significantly correlated to soil organic-C. Enzyme activities were always correlated among them

    Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    No full text
    Recently, the widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that soil enzyme activities varied with rotation systems and growth stages in paddy field. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of F-R), and chitinase activities in all rotations, while compared with drained soil, waterlogging (in month of June, the early period of waterlogging) significantly decreased (P<0.05) β-glucosidase, alkaline and acid phosphatases, leucine aminopeptidase (except of P-S-R), arylsulfatase, chitinases. Soil organic-C was positively correlated with acid and alkaline phosphatases, and arylsulfatase while ß-glucosidase, chitinases and leucine aminopeptidase were not significantly correlated to soil organic-C. Enzyme activities were always correlated among them

    Process of psychological adjustment to multiple sclerosis : comparing the roles of appraisals, acceptance, and cognitive fusion

    No full text
    Background: Research in psychological adjustment to multiple sclerosis (MS) suggests that the way individuals appraise their condition can have an impact upon their psychological well-being and adjustment to their condition. Such research has influenced the development of Cognitive Behavioural Therapy (CBT) interventions in this population. In recent years, Acceptance and Commitment Therapy (ACT) has gathered increasing interest in relation to chronic health conditions. ACT does not target the content of thought, but rather focuses on the contexts in which thought occurs (i.e. how individuals relate to their experiences). Aim and Primary Hypothesis: A cross sectional design was used to compare the extent to which cognitive appraisals and ACT constructs (‘acceptance’ and ‘cognitive fusion’), mediate the relationship between physical symptoms of MS and psychological adjustment outcomes. It was hypothesised that in comparison to cognitive appraisals, ACT constructs would serve as stronger mediators of the relationship between physical symptoms of MS and outcome measures. This study also piloted a newly adapted measure of MS related acceptance, the Multiple Sclerosis Acceptance Questionnaire (MSAQ). Method and Results: Participants (N = 133) completed self-report measures of: MS symptom severity, various cognitive constructs (cognitive appraisals and ACT constructs), symptoms of psychological distress, and satisfaction with life. Multiple mediation analysis was then used to compare competing mediational hypotheses. In comparison to all measures of cognitive appraisals, the ACT constructs tended to be stronger mediators of the relationship between symptoms and outcome measures (both psychological distress, and satisfaction with life). There was also some evidence for appraisals of personal control mediating the relationship between symptoms of MS and psychological distress. Conclusions: This research suggests that ACT constructs may be relevant to the process of psychological adjustment to MS, and that ACT based interventions may be worthy of investigation in this population. The newly adapted MSAQ also shows preliminary promise as a measure of MS related acceptance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore