718 research outputs found

    Vertical Federated Alzheimer's Detection on Multimodal Data

    Full text link
    In the era of rapidly advancing medical technologies, the segmentation of medical data has become inevitable, necessitating the development of privacy preserving machine learning algorithms that can train on distributed data. Consolidating sensitive medical data is not always an option particularly due to the stringent privacy regulations imposed by the Health Insurance Portability and Accountability Act (HIPAA). In this paper, we introduce a HIPAA compliant framework that can train from distributed data. We then propose a multimodal vertical federated model for Alzheimer's Disease (AD) detection, a serious neurodegenerative condition that can cause dementia, severely impairing brain function and hindering simple tasks, especially without preventative care. This vertical federated model offers a distributed architecture that enables collaborative learning across diverse sources of medical data while respecting privacy constraints imposed by HIPAA. It is also able to leverage multiple modalities of data, enhancing the robustness and accuracy of AD detection. Our proposed model not only contributes to the advancement of federated learning techniques but also holds promise for overcoming the hurdles posed by data segmentation in medical research. By using vertical federated learning, this research strives to provide a framework that enables healthcare institutions to harness the collective intelligence embedded in their distributed datasets without compromising patient privacy.Comment: 14 pages, 7 figures, 2 table

    Deep Multi-Branch CNN Architecture for Early Alzheimer's Detection from Brain MRIs

    Full text link
    Alzheimer's disease (AD) is a neuro-degenerative disease that can cause dementia and result severe reduction in brain function inhibiting simple tasks especially if no preventative care is taken. Over 1 in 9 Americans suffer from AD induced dementia and unpaid care for people with AD related dementia is valued at $271.6 billion. Hence, various approaches have been developed for early AD diagnosis to prevent its further progression. In this paper, we first review other approaches that could be used for early detection of AD. We then give an overview of our dataset that was from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and propose a deep Convolutional Neural Network (CNN) architecture consisting of 7,866,819 parameters. This model has three different convolutional branches with each having a different length. Each branch is comprised of different kernel sizes. This model can predict whether a patient is non-demented, mild-demented, or moderately demented with a 99.05% three class accuracy.Comment: 11 pages, 7 figure

    Room temperature ionic liquids as media for photophysical studies

    Get PDF
    In this article, we first present a brief introduction on room temperature ionic liquids based on substituted imidazolium salts that have been the focus of extensive studies in recent years. Subsequently, we summarize some of the photophysical studies made in these ionic liquids. Finally, we discuss the suitability of the imidazolium ionic liquids in optical studies taking into consideration their absorption and fluorescence behavior

    Utility of Ottawa ankle rules in excluding ankle fractures in Indian scenario

    Get PDF
    Background: Patients with acute ankle injuries form a major bulk in outdoor and emergency room, and many of them get radiographs done to rule out fractures. Ottawa ankle rules (OAR) may reduce the need for unnecessary radiographs by detecting fractures only with help of simple clinical findings.  We conducted this study to see the extent of usefulness of these rules in our day-to-day practice.Methods: Our study is observational in nature. A total of 107 patients who visited the clinic of the chief investigator between the time period from 1st January 2019 to 31st December 2020, fulfilling inclusion criteria and willing to participate, were enrolled. The patients were examined clinically, and the assessor recorded the findings on a previously prepared assessment form. Data analysis was done from the master chart.Results: Among the 107 patients, 46 patients were ‘suspicion positive’ by OAR. After the radiographic assessment, we found 11 fractures, all of which belonged to the ‘suspicion positive’ group. Statistical analysis showed that OAR had a sensitivity of 100% for ankle fractures, whereas specificity for the same was 63.54%. We found the positive predictive value to be 23.91% and negative predictive value to be 100%, positive likelihood ratio of 2.74, and negative likelihood ratio of 0.Conclusions: OAR is an easy and reliable tool to screen ankle fractures. In a country with as massive a health care burden as ours, it can reduce the number of unnecessary radiographs and thus reduce exposure, cost, and time of medical professionals

    Biologia Futura: use of biocides during COVID-19-global reshuffling of the microbiota

    Get PDF
    Aim The article reviews the current usage of biocides during this lockdown period for sanitizing our living areas due to the pandemic and discusses the pros and cons. Subject COVID-19 spread like wildfire to over 200 countries of the world across all continents. The causative agent, novel coronavirus (SARS-CoV-2) is being counter attacked by a thorough application of disinfectants and sterilants. However, the virus mutated over 30 times during this global pandemic, creating panic and leading to enhanced pathogenicity and consequently to more stringent sanitation measures for controlling it. However, excessive use of different types of biocides for disinfecting surfaces is highly alarming in several cases. Extensive application of biocides affects the microbial flora, leading to an abrupt decrease in the number and diversity of beneficial microbes that may directly affect the functioning of nutrient cycles. Results The increased concentration of biocides in agricultural land via surface water or pond water indirectly affect the soil and water ecosystem, soil aggregation and fertility. This will also lead to the flourishing of resistant strains due to loss of competition from the other species, which fail to persist after prolonged use of biocides. Conclusion It is necessary to realize the environmental impacts of biocides and sterilants. It is the right time to stop their entry into the agricultural ecosystem by following adequate management strategies and complete neutralization

    Microstructure and Microhardness Study of Aluminium Graphene Composite Made by Laser Additive Manufacturing

    Get PDF
    Laser additive manufacturing (LAM) is one of the advanced manufacturing technologies capable of manufacturing complex engineering components with superior material properties by layer by layer deposition of material directly from CAD model. Layer-by-layer addition of material empowers LAM in selective deposition of pre-defined composition of material shaping the engineering components making it a feature based design and manufacturing technology. The LAM built components largely depends on LAM processing parameters and the quality of single deposited layer. Hence selection of appropriate processing parameters is one of the mandatory requirements for achieving superior mechanical properties LAM built components. This paper reports the LAM of aluminium/grapheme (Al-G) composite on Al and SS substrate. 2 kW fibre laser based additive manufacturing with 2 mm laser beam diameter at substrate was used to deposit Al-G layers (Al + 1%wt G) at different combinations of laser scanning speed and laser power. Effect of laser power and scanning speed on the quality of deposited layers was investigated oand optimum parametric window was identified. The Optimum range of energy intensity is 50 to 400 J/mm which favours material deposition (< 50P/v - < 400 J/mm). Thus prepared samples were subjected to optical microscopy, scanning electron microscopy and microhardness measurements. A good quality continuous track is observed at 108 J/mm energy intensity and there is very slight change in hardness observed on Al substrate). A significant increase in micro hardness is observed on SS substrate. The maximum value of HV is 463.6 at 0.6 m/min. laser scanning speed and 1.2 kW laser power. These LAM built Aluminium grapheme composite have potential applications in the field of light weight and high strength material for manufacturing of complex shape and cellular structure

    The human PAF complex coordinates transcription with events downstream of RNA synthesis.

    Get PDF
    The yeast PAF (yPAF) complex interacts with RNA polymerase II and coordinates the setting of histone marks associated with active transcription. We report the isolation and functional characterization of the human PAF (hPAF) complex. hPAF shares four subunits with yPAF (hCtr9, hPaf1, hLeo1, and hCdc73), but contains a novel higher eukaryotic-specific subunit, hSki8. RNAi against hSki8 or hCtr9 reduces the cellular levels of other hPAF subunits and of mono- and trimethylated H3-Lys 4 and dimethylated H3-Lys 79. The hSki8 subunit is also a component of the human SKI (hSKI) complex. Yeast SKI complex is cytoplasmic and together with Exosome mediates 3\u27-5\u27 mRNA degradation. However, hSKI complex localizes to both nucleus and cytoplasm. Immunoprecipitation experiments revealed that hPAF and hSKI complexes interact, and ChIP experiments demonstrated that hSKI associates with transcriptionally active genes dependent on the presence of hPAF. Thus, in addition to coordinating events during transcription (initiation, promoter clearance, and elongation), hPAF also coordinates events in RNA quality control

    Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation

    Get PDF
    Cdc37 is a molecular chaperone that functions with Hsp90 to promote protein kinase folding. Analysis of 65 Saccharomyces cerevisiae protein kinases (∼50% of the kinome) in a cdc37 mutant strain showed that 51 had decreased abundance compared with levels in the wild-type strain. Several lipid kinases also accumulated in reduced amounts in the cdc37 mutant strain. Results from our pulse-labeling studies showed that Cdc37 protects nascent kinase chains from rapid degradation shortly after synthesis. This degradation phenotype was suppressed when cdc37 mutant cells were grown at reduced temperatures, although this did not lead to a full restoration of kinase activity. We propose that Cdc37 functions at distinct steps in kinase biogenesis that involves protecting nascent chains from rapid degradation followed by its folding function in association with Hsp90. Our studies demonstrate that Cdc37 has a general role in kinome biogenesis

    Design and Characteristics of Hydroxyapatites: Effect of Radiation

    Get PDF
    We have prepared silicate based hard materials and have processed it with organic flux. Because of the bioactivities of hydroxyapatites with tissues, this class of materials have attracted interest for bone applications. We have utilized low temperature processing techniques. Organic melt was used and the directional solidification method to cast the shaped sample. This organic treated material has different characteristics than coarsened oxide materials. Our approach involved low temperature processing using nano and micron sized powders of the material system Na2O-K2O-CaO- MgO-Ga2O3-SiO2, and titanates were processed by sintering and grain growth. Our results indicate that substitution of gallium and magnesium or titanium with some variation in processing methods have great potential to improve the glassy characteristics without decreasing the mechanical properties of bones. Effect of radiation on bone was studied by exposing with commercially available Cs137 gamma ray source. It was observed that electrical resistivity increased due to radiation exposure for this system
    • …
    corecore