17 research outputs found
Mass Fragmentations. II. Some Aspects of Mass Spectra from a Series of Compounds Related to Methyl dl-Jasmonate Syntheses
This paper deals with graphical mass spectral data of the
twentyfive compounds related to the preparation of methyl dl-jasmonate and its related materials. The fragmentations from the substituted cyclopentanones and norbornane derivatives can serve basic data for both characterization and elucidation of the structures of complex compounds referring to the preparation of principal components of jasmine flower
Efficient Drug Delivery of Paclitaxel Glycoside: A Novel Solubility Gradient Encapsulation into Liposomes Coupled with Immunoliposomes Preparation
Although the encapsulation of paclitaxel into liposomes has been extensively studied, its significant hydrophobic and uncharged character has generated substantial difficulties concerning its efficient encapsulation into the inner water core of liposomes. We found that a more hydrophilic paclitaxel molecule, 7-glucosyloxyacetylpaclitaxel, retained tubulin polymerization stabilization activity. The hydrophilic nature of 7-glucosyloxyacetylpaclitaxel allowed its efficient encapsulation into the inner water core of liposomes, which was successfully accomplished using a remote loading method with a solubility gradient between 40% ethylene glycol and Cremophor EL/ethanol in PBS. Trastuzumab was then conjugated onto the surface of liposomes as immunoliposomes to selectively target human epidermal growth factor receptor-2 (HER2)-overexpressing cancer cells. In vitro cytotoxicity assays revealed that the immunoliposomes enhanced the toxicity of 7-glucosyloxyacetylpaclitaxel in HER2-overexpressing cancer cells and showed more rapid suppression of cell growth. The immunoliposomes strongly inhibited the tumor growth of HT-29 cells xenografted in nude mice. Notably, mice survived when treated with the immunoliposomes formulation, even when administered at a lethal dose of 7-glucosyloxyacetylpaclitaxel in vivo. This data successfully demonstrates immunoliposomes as a promising candidate for the efficient delivery of paclitaxel glycoside
Targeting Ovarian Cancer Cells Overexpressing CD44 with Immunoliposomes Encapsulating Glycosylated Paclitaxel
Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15⁻20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies
Practical Liposomal Formulation for Taxanes with Polyethoxylated Castor Oil and Ethanol with Complete Encapsulation Efficiency and High Loading Efficiency
Taxanes including paclitaxel and docetaxel are effective anticancer agents preferably sufficient for liposomal drug delivery. However, the encapsulation of these drugs with effective amounts into conventional liposomes is difficult due to their high hydrophobicity. Therefore, an effective encapsulation strategy for liposomal taxanes has been eagerly anticipated. In this study, the mixture of polyethoxylated castor oil (Cremophor EL) and ethanol containing phosphate buffered saline termed as CEP was employed as a solvent of the inner hydrophilic core of liposomes where taxanes should be incorporated. Docetaxel-, paclitaxel-, or 7-oxacetylglycosylated paclitaxel-encapsulating liposomes were successfully prepared with almost 100% of encapsulation efficiency and 29.9, 15.4, or 29.1 mol% of loading efficiency, respectively. We then applied the docetaxel-encapsulating liposomes for targeted drug delivery. Docetaxel-encapsulating liposomes were successfully developed HER2-targeted drug delivery by coupling HER2-specific binding peptide on liposome surface. The HER2-targeting liposomes exhibited HER2-specific internalization and enhanced anticancer activity in vitro. Therefore, we propose the sophisticated preparation of liposomal taxanes using CEP as a promising formulation for effective cancer therapies
Anticancer efficacy of different gPTX formulations with repeated administration in HT-29 cells tumor-bearing mice.
<p>gPTX-IL (open circle with line), gPTX-L (open triangle), gPTX-L with trastuzumab (open square), trastuzumab (closed square), CEP-IL (closed circle), CEP-L (closed triangle), or PBS (cross) was intravenously injected at day 0, 10, and 20. The dose of each administration was 150 mg/kg gPTX. A and B, Changes in tumor volume. C, Changes in body weight. D, Survival curves. Data are presented as the mean ± S.D. The changes of tumor volume and body weight in the mice administered with gPTX-L do not show S.D. after day 10. The <i>P</i> value shown compared with gPTX-IL and gPTX-L with trastuzumab treated group at day 43 (n = 4). *, <i>P</i><0.05.</p
Influence of the lipid composition and incubation time for drug encapsulation by the solubility gradient method.
<p>A, The encapsulation efficiency (EE) of gPTX-L with various lipid compositions was evaluated after 30 min of incubation for gPTX encapsulation. B, The drug retention of gPTX-L with different lipid compositions was evaluated in medium supplied with 10% FBS at 37°C. C, The efficiency of drug encapsulation under different durations of incubation was evaluated with a DPPC to Chol ratio of 3∶1.</p