96 research outputs found

    Non-equilibrium readiness and accuracy of Gaussian Quantum Thermometers

    Full text link
    The dimensionality of a thermometer is key in the design of quantum thermometry schemes. In general, the phenomenology that is typical of finite-dimensional quantum thermometry does not apply to infinite dimensional ones. We analyse the dynamical and metrological features of non-equilibrium Gaussian Quantum Thermometers: on one hand, we highlight how quantum entanglement can enhance the readiness of composite Gaussian thermometers; on the other hand, we show that non-equilibrium conditions do not guarantee the best sensitivities in temperature estimation, thus suggesting the reassessment of the working principles of quantum thermometry

    Quantum Simulation of single-qubit thermometry using linear optics

    Full text link
    Standard thermometry employs the thermalisation of a probe with the system of interest. This approach can be extended by incorporating the possibility of using the non-equilibrium states of the probe, and the presence of coherence. Here, we illustrate how these concepts apply to the single-qubit thermometer introduced by Jevtic et al. by performing a simulation of the qubit-environment interaction in a linear-optical device. We discuss the role of the coherence, and how this affects the usefulness of non-equilibrium conditions. The origin of the observed behaviour is traced back to the propensity to thermalisation, as captured by the Helmholtz free energy.Comment: 6 pages, 6 figure

    Speed of qubit states during thermalisation

    Full text link
    Classifying quantum states usually demands to observe properties such as the amount of correlation at one point in time. Further insight may be gained by inspecting the dynamics in a given evolution scheme. Here we attempt such a classification looking at single-qubit and two-qubit states at the start of thermalisation with a heat bath. The speed with which the evolution starts is influenced by quantum aspects of the state, however, such signatures do not allow for a systematic classification

    Monitoring dispersive samples with single photons: the role of frequency correlations

    Get PDF
    The physics that governs quantum monitoring may involve other degrees of freedom than the ones initialised and controlled for probing. In this context we address the simultaneous estimation of phase and dephasing characterizing a dispersive medium, and we explore the role of frequency correlations within a photon pair generated via parametric down-conversion, when used as a probe for the medium. We derive the ultimate quantum limits on the estimation of the two parameters, by calculating the corresponding quantum Cram\'er-Rao bound; we then consider a feasible estimation scheme, based on the measurement of Stokes operators, and address its absolute performances in terms of the correlation parameters, and, more fundamentally, of the role played by correlations in the simultaneous achievability of the quantum Cram\'er-Rao bounds for each of the two parameters.Comment: to appear in Quantum Measurements and Quantum Metrolog

    Assessing frequency correlation through a distinguishability measurement

    Full text link
    The simplicity of a question such as wondering if correlations characterize or not a certain system collides with the experimental difficulty of accessing such information. Here we present a low demanding experimental approach which refers to the use of a metrology scheme to obtain a conservative estimate of the strength of frequency correlations. Our testbed is the widespread case of a photon pair produced per downconversion. The theoretical architecture used to put the correlation degree on a quantitative ground is also described

    Entropy Production in Continuously Measured Gaussian Quantum Systems

    Full text link
    The entropy production rate is a key quantity in non-equilibrium thermodynamics of both classical and quantum processes. No universal theory of entropy production is available to date, which hinders progress towards its full grasping. By using a phase space-based approach, here we take the current framework for the assessment of thermodynamic irreversibility all the way to quantum regimes by characterizing entropy production -- and its rate -- resulting from the continuous monitoring of a Gaussian system. This allows us to formulate a sharpened second law of thermodynamics that accounts for the measurement back-action and information gain from a continuously monitored system. We illustrate our framework in a series of physically relevant examples.Comment: 15+6 pages, 2 figures. This version matches the one accepted for publication in npj Quantum In

    In-between forest expansion and cropland decline: A revised USLE model for soil erosion risk under land-use change in a Mediterranean region

    Get PDF
    The present study illustrates an original approach for the long-term assessment of soil erosion risk under land-use changes in a Mediterranean region (Matera, southern Italy). The study has been focused on the implementation of a modified Universal Soil Loss Equation (USLE) model at three time points (1960, 1990, 2010) with the objective to evaluate the contribution of each component to model's performance and model outcomes’ reliability. A modified USLE model was proposed for the assessment of soil erosion risk, based on the simplification of model's parameters and the use of high spatial resolution datasets. Spatio-temporal variability in the model's outcomes was analyzed for basic land-use classes. Our approach has improved model's flexibility with the use of high spatial resolution layers, producing reliable long-term estimates of soil loss for the study area

    Geometrical bounds on irreversibility in open quantum systems

    Get PDF
    Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower bound to the irreversible entropy production for open quantum systems as well. These provide insights on the thermodynamics of the information erasure. Limits of the applicability of our bounds are discussed, and demonstrated in a quantum photonic simulator

    Multiparameter quantum estimation of noisy phase shifts

    Get PDF
    Phase estimation is the most investigated protocol in quantum metrology, but its performance is affected by the presence of noise, also in the form of imperfect state preparation. Here we discuss how to address this scenario by using a multiparameter approach, in which noise is associated to a parameter to be measured at the same time as the phase. We present an experiment using two-photon states, and apply our setup to investigating optical activity of fructose solutions. Finally, we illustrate the scaling laws of the attainable precisions with the number of photons in the probe state
    • …
    corecore