6,550 research outputs found

    Observing gravitational lensing effects by Sgr A* with GRAVITY

    Full text link
    The massive black hole at the Galactic center Sgr A* is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, magnification effects on both images. The near-to-come second generation VLTI instrument GRAVITY will perform observations in the Near Infrared of the Galactic Center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space [DLS,gamma,K], where DLS is the distance between the lens and the source, gamma is the alignment angle of the source, and K is the source apparent magnitude in the K-band. The easiest effect to be observed in the next years is the astrometric displacement of primary images. In particular the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations it will be possible to detect effects related to the spin of the black hole or Post-Newtonian orders in the deflection.Comment: 29 pages, 9 figures, in press on Ap

    Gravitational Lensing of stars in the central arcsecond of our Galaxy

    Full text link
    In the neighborhood of Sgr A*, several stars (S2, S12, S14, S1, S8, S13) enjoy an accurate determination of their orbital parameters. General Relativity predicts that the central black hole acts as a gravitational lens on these stars, generating a secondary image and two infinite series of relativistic images. For each of these six stars, we calculate the light curves for the secondary and the first two relativistic images, in the Schwarzschild black hole hypothesis, throughout their orbital periods. The curves are peaked around the periapse epoch, but two subpeaks may arise in nearly edge-on orbits, when the source is behind or in front of Sgr A*. We show that for most of these stars the secondary image should be observable during its brightness peak. In particular, S14 is the best candidate, since its secondary image reaches K=23.3 with an angular separation of 0.125 mas from the apparent horizon of the central black hole. The detection of such images by future instruments could represent the first observation of gravitational lensing beyond the weak field approximation.Comment: 28 pages, 9 figures, in press on Ap

    Time Delay in Black Hole Gravitational Lensing as a Distance Estimator

    Full text link
    We calculate the time delay between different relativistic images formed by black hole gravitational lensing in the strong field limit. For spherically symmetric black holes, it turns out that the time delay between the first two images is proportional to the minimum impact angle. Their ratio gives a very interesting and precise measure of the distance of the black hole. Moreover, using also the separation between the images and their luminosity ratio, it is possible to extract the mass of the black hole. The time delay for the black hole at the center of our Galaxy is just few minutes, but for supermassive black holes with M=10^8 - 10^9 solar masses in the neighbourhood of the Local Group the time delay amounts to few days, thus being measurable with a good accuracy.Comment: 8 pages, 3 figure

    Radiation Pressure Induced Einstein-Podolsky-Rosen Paradox

    Get PDF
    We demonstrate the appearance of Einstein-Podolsky-Rosen (EPR) paradox when a radiation field impinges on a movable mirror. The, the possibility of a local realism test within a pendular Fabry-Perot cavity is shown to be feasible.Comment: 4 pages ReVTeX, 1 eps figur

    RADIS: Remote Attestation of Distributed IoT Services

    Get PDF
    Remote attestation is a security technique through which a remote trusted party (i.e., Verifier) checks the trustworthiness of a potentially untrusted device (i.e., Prover). In the Internet of Things (IoT) systems, the existing remote attestation protocols propose various approaches to detect the modified software and physical tampering attacks. However, in an interoperable IoT system, in which IoT devices interact autonomously among themselves, an additional problem arises: a compromised IoT service can influence the genuine operation of other invoked service, without changing the software of the latter. In this paper, we propose a protocol for Remote Attestation of Distributed IoT Services (RADIS), which verifies the trustworthiness of distributed IoT services. Instead of attesting the complete memory content of the entire interoperable IoT devices, RADIS attests only the services involved in performing a certain functionality. RADIS relies on a control-flow attestation technique to detect IoT services that perform an unexpected operation due to their interactions with a malicious remote service. Our experiments show the effectiveness of our protocol in validating the integrity status of a distributed IoT service.Comment: 21 pages, 10 figures, 2 table

    Methods for Estimating Capacities and Rates of Gaussian Quantum Channels

    Full text link
    Optimization methods aimed at estimating the capacities of a general Gaussian channel are developed. Specifically evaluation of classical capacity as maximum of the Holevo information is pursued over all possible Gaussian encodings for the lossy bosonic channel, but extension to other capacities and other Gaussian channels seems feasible. Solutions for both memoryless and memory channels are presented. It is first dealt with single use (single-mode) channel where the capacity dependence from channel's parameters is analyzed providing a full classification of the possible cases. Then it is dealt with multiple uses (multi-mode) channel where the capacity dependence from the (multi-mode) environment state is analyzed when both total environment energy and environment purity are fixed. This allows a fair comparison among different environments, thus understanding the role of memory (inter-mode correlations) and phenomenon like superadditivity of the capacity. The developed methods are also used for deriving transmission rates with heterodyne and homodyne measurements at the channel output. Classical capacity and transmission rates are presented within a unique framework where the rates can be treated as logarithmic approximations of the capacity.Comment: 39 pages, 30 figures. New results and graphs were added. Errors and misprints were corrected. To appear in IEEE Trans. Inf. T

    Reconstructing the density operator by using generalized field quadratures

    Full text link
    The Wigner function for one and two-mode quantum systems is explicitely expressed in terms of the marginal distribution for the generic linearly transformed quadratures. Then, also the density operator of those systems is written in terms of the marginal distribution of these quadratures. Some examples to apply this formalism, and a reduction to the usual optical homodyne tomography are considered.Comment: 17 pages, Latex,accepted by Quantum and Semiclassical Optic

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio
    • …
    corecore