1,157 research outputs found

    The CIFF Proof Procedure for Abductive Logic Programming with Constraints: Theory, Implementation and Experiments

    Get PDF
    We present the CIFF proof procedure for abductive logic programming with constraints, and we prove its correctness. CIFF is an extension of the IFF proof procedure for abductive logic programming, relaxing the original restrictions over variable quantification (allowedness conditions) and incorporating a constraint solver to deal with numerical constraints as in constraint logic programming. Finally, we describe the CIFF system, comparing it with state of the art abductive systems and answer set solvers and showing how to use it to program some applications. (To appear in Theory and Practice of Logic Programming - TPLP)

    Knowledge Representation with Multiple Logical Theories and Time

    Get PDF
    We present a knowledge representation framework where a collection of logic programs can be combined together by means of meta-level program composition operations. Each object-level program is composed of a collection of extended clauses, equipped with a time interval representing the time period in which they hold. The interaction between program composition operations and time yields a powerful knowledge representation language in which many applications can be naturally developed. The language is given a meta-level semantics which also provides an executable specification. Moreover, we define an abstract semantics by extending the immediate consequence operator from a single logic program to compositions of logic programs and taking into account time intervals. The operational, meta-level semantics is proven sound and complete with respect to the abstract bottom-up semantics. The approach is further extended in order to cope with the problem of reasoning over joined intervals of time. Three applications in the field of business regulations are shown

    LONG TERM IMPROVEMENT OF PERFORMANCE INDEXES IN BASKETBALL PLAYERS

    Get PDF
    In the present paper measurements and tests were carried out on 12 basketball players of a D-series team, undergoing muscular strengthen, for a period of more than 2 years. The team was divided into 2 groups : the control group, composed of 5 players undergoing only team-training, and the experimental group, composed of 7 players undergoing team-training and sinusoidal electrical stimulation to increase the power in quadriceps femoris and triceps surae . In this study a sinusoidal current at the frequency of 2500 Hz has been used. A stimulation time of 10 seconds was chosen, followed by a rest period of 50 seconds to avoid a reduction of the subsequent contraction force. This stimulation procedure was applied to the subjects of the experimental group for 20 minutes per day for 15days. Four stimulation cycles of 15 days were globally performed using the 4channel electrical stimulator mod. ST-E4C.Similar anthropometric data characterised the two groups : for the experimental group the mean age was 20.1 f 1.9 years, the mean height was 187.7 f 5.0 an and the mean weight 83.8 f 6.4 Kg for the control group these values were respectively 20.8 f 2.5 years, 189.0 f 2.8 cm, 80.6 f 3.7 Kg .Before and after each stimulation cycle, at the beginning and at the end of the agonistic season several tests were performed to evaluate performance indexes :1. Abalakov test (taking the best result of three tests);2. Standing long jump (taking the best result of three tests);3.30 meters dash (taking the average time of three tests).This study has shown that a h26 months the experimental group reached increments of performance indexes twice greater than the control group. After summer, before the beginning of the agonistic season, the absolute increments for the experimental group remained higher than the control group, suggesting that the improvement of the muscular performance by means of sinusoidal electrical stimulation is maintained by a normal training and constitutes a basic resource for the following improvements

    Searching for Primordial Black Holes with the Einstein Telescope: impact of design and systematics

    Full text link
    Primordial Black Holes (PBHs) have recently attracted much attention as they may explain some of the LIGO/Virgo/KAGRA observations and significantly contribute to the dark matter in our universe. The next generation of Gravitational Wave (GW) detectors will have the unique opportunity to set stringent bounds on this putative population of objects. Focusing on the Einstein Telescope (ET), in this paper we analyse in detail the impact of systematics and different detector designs on our future capability of observing key quantities that would allow us to discover and/or constrain a population of PBH mergers. We also perform a population analysis, with a mass and redshift distribution compatible with the current observational bounds. Our results indicate that ET alone can reach an exquisite level of accuracy on the key observables considered, as well as detect up to tens of thousands of PBH binaries per year, but for some key signatures (in particular high--redshift sources) the cryogenic instrument optimised for low frequencies turns out to be crucial, both for the number of observations and the error on the parameters reconstruction. As far as the detector geometry is concerned, we find that a network consisting of two separated L--shaped interferometers of 15 (20)~km arm length, oriented at 4545^{\circ} with respect to each other performs better than a single triangular shaped instrument of 10 (15)~km arm length, for all the metrics considered.Comment: 24 pages, 13 figure

    Fabrication of high-resolution strain sensors based on wafer-level vacuum packaged MEMS resonators

    Get PDF
    The paper reports on the fabrication and characterization of high-resolution strain sensors for structural materials based on Silicon On Insulator flexural resonators manufactured by polysilicon Low-Pressure Chemical Vapour Deposition vacuum packaging. The sensors present sensitivity of 164 Hz/με and strain resolution limit of 150 pε on steel for a measurement time of 315 ms, in both tensile and compressive strain regimes. The readout of the sensor is implemented with a transimpedance oscillator circuit implemented on Printed Circuit Board, in which a microcontroller-based reciprocal frequency counter is integrated. The performance of the sensors on steel are investigated for measurement bandwidths from 1.5 to 500 Hz and a comparison with conventional metal strain gauges is proposed.The contribution of Mr. Filippo Bonafè, Mr. Fabrizio Tamarri, Mr. Michele Sanmartin and Mr. Giulio Pizzochero in the clean room processing employed for the manufacturing of the MEMS sensors is acknowledged. The contribution of Dr. Michele Bellettato in sample preparation is also acknowledged.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.sna.2016.01.00

    Statistical Interparticle Potential of an Ideal Gas of Non-Abelian Anyons

    Full text link
    We determine and study the statistical interparticle potential of an ideal system of non-Abelian Chern-Simons (NACS) particles, comparing our results with the corresponding results of an ideal gas of Abelian anyons. In the Abelian case, the statistical potential depends on the statistical parameter and it has a "quasi-bosonic" behaviour for statistical parameter in the range (0,1/2) (non-monotonic with a minimum) and a "quasi-fermionic" behaviour for statistical parameter in the range (1/2,1) (monotonically decreasing without a minimum). In the non-Abelian case the behavior of the statistical potential depends on the Chern- Simons coupling and the isospin quantum number: as a function of these two parameters, a phase diagram with quasi-bosonic, quasi-fermionic and bosonic-like regions is obtained and investigated. Finally, using the obtained expression for the statistical potential, we compute the second virial coefficient of the NACS gas, which correctly reproduces the results available in literature.Comment: 21 pages, 4 color figure

    Validation of statistical clustering on TES dataset using synthetic Martian spectra

    Get PDF
    In this work we present some results concerning the analysis of Thermal Emission Spectrometer (TES) data, looking at the methane Q-branch spectral signature at 1304 cm-1. Such analysis has been enabled by producing some synthetic spectral datasets, simulating the atmospheric and surface variability observed on Mars, excluding the high latitude regions. The use of synthetic spectra is aimed to provide a better comprehension of the influence that the atmospheric state vector and its composition have on the spectral behavior. This effort is important, because the TES data are characterized by a low resolution (10 cm-1) and a significant random and systematic noise which could, in principle, give results whose quality needs to be improved. We apply statistical clustering of the synthetic spectra to evaluate the effectiveness of detecting methane, and estimating its abundance
    corecore