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Abstract. We present a knowledge representation framework where a collection

of logic programs can be combined together by means of meta-level program

composition operations. Each object-level program is composed of a collection of

extended clauses, equipped with a time interval representing the time period in

which they hold. The interaction between program composition operations and time

yields a powerful knowledge representation language in which many applications

can be naturally developed. The language is given a meta-level semantics which

also provides an executable speci®cation. Moreover, we de®ne an abstract semantics

by extending the immediate consequence operator from a single logic program

to compositions of logic programs and taking into account time intervals. The

operational, meta-level semantics is proven sound and complete with respect to the

abstract bottom-up semantics. The approach is further extended in order to cope

with the problem of reasoning over joined intervals of time. Three applications in

the ®eld of business regulations are shown.

K eywords: logic programming, meta-logic, temporal reasoning, knowledge repre-

sentation.

1. Introduction

Logic program ming has been widely recognized as a powerful knowledge repre-

sentation tool in various computing domains. It can be used both for procedural

and declarative knowledge representation, and consequently it can be used for both

programming and program speci®cation, database applications and for knowledge

representation and problem solving in arti®cial intelligence.

The development of logic programming, however, has shown that the basic

paradigm is not expressive enough to deal naturally with several computing prob-

lems. To overcome some of these limitations, many extensions of logic programming

have been studied to improve its knowledge representation and problem solving

capabilities, such as the ability of handling negation, constraints, and abstraction

mechanisms.

In this paper we propose yet another extension which addresses the handling of

temporal information. Even though there are many proposals in the literature in

the ®eld of both temporal databases (see, for example, Tansel et al. (1993)) and
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temporal logic languages (see, e.g. Interval Temporal Logic (Allen 1984), Event

Calculus (Kowalski and Sergot 1986), Datalog1S (Chomicki and Imielinski 1988),

Temporal Prolog (Gabbay 1987, Hrycej 1993), and Templog (Abadi and Manna

1989)), our proposal addresses the handling of time dependent knowledge within the

multi-theory framework presented in Brogi et al. (1994). This framework allows one

to represent knowledge as separate logic theories, which can be combined together

by means of various meta-level operators. From a deductive database perspective,

each logic program (theory) can be viewed as an extended relational database where

relations are represented partly intensionally and partly extensionally. The meta-

level operators can then be viewed as a means of constructing views by combining

multiple databases in various ways.

The need for extending the multi-theory framework with time came out clearly

when we addressed knowledge representation problems, especially in the ®eld of

business data and procedures, and regulations and laws. A simple example may be

useful to clarify the critical points. Consider the problem of representing the fact

that a movie ticket is $5 for kids and $7 for adults in the ®rst 6 months of 1996 and

$7 for everybody in the rest of the year. We allow one to attach time intervals to a

clause, representing the period of time during which the clause is valid. The following

theory BoxO� ce adopts this representation to model the above information about

movie tickets.

BoxO� ce:

ticket-cost(5,p) ¬ ticket-cost(7,p) ¬
age(p,a), a %16 * age(p,a), a > 16 *
[< Jan 1 1996> ,< Jun 30 1996> ] [< Jan 1 1996> ,< Jun 30 1996> ]

ticket-cost(7,p) ¬ age(p,a) ¬
age(p, ) * today(d1), born(p,d2), year-diŒ(d2,d1,a) *
[< Jul 1 1996> ,< Dec 31 1996> ] [< Jan 1 1900> ,a]

where a stands for a time point later than any other one, and year-diŒ(d2,d1,a)

computes the age a given the current date d1 and the date of birth d2. The last

clause for ticket-cost represents the fact that the ticket is $7 in the second part of the

year, regardless of the customer’s age. Moreover, notice that the theory is parametric

with respect to the actual day of the year and the customer’s birthday. The predicate

today is de®ned in a separate theory which represents the current date, e.g.

Today:

today(< May 28 1996> ) ¬*
[< May 28 1996> ,< May 28 1996> ]

and the customer’s birthday is given in a separate theory like

Tom:

born(Tom,< May 7 1981> ) ¬*
[< May 7 1981> ,a]

The previous theories can be combined by means of a union operator Ä (see

section 2): the query ticket-cost(s, Tom) with respect to the combined knowledge

BoxO�ce ÄTom ÄToday

yields the answer s = 5.
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As shown in the exam ple, the kinds of applications we are interested in suggest

the following decisions about the introduction of time in our framework:

F the primitive notion of time is an interval of time,

F time intervals are attached to clauses.

Of course, there are many other options, e.g. using time points and relations among

them, attaching time information to relations instead of rules and so on. Investigating

the impact of these alternative choices on our framework is one of the tasks we

intend to pursue in the immediate future.

The paper is organized as follows. Section 2 brie¯y introduces the operators

for combining logic theories. Meta-logic is exploited to provide a formal, and,

at the same time, executable semantics to the operators. Section 3 discusses the

introduction of time intervals and its semantics, still based on meta-logic. Section 4

provides our language with an abstract semantics by extending the de®nition of the

immediate consequence operator from a single logic program to expressions of logic

programs. This section includes the proofs of the soundness and completeness of

the operational semantics, given by means of meta-logics in section 3, with respect

to the abstract semantics. Section 5 deals with the application of the framework

discussed so far to representing knowledge in the ®eld of regulations and section 6

introduces some auxiliary operators to make easier the handling of time. Section 7

addresses the problem of handling reasoning over joined intervals, that provides the

possibility of computing the maxim al interval in which an answer holds. Section 8

presents various proposals in the literature dealing with time and ®nally, section 9

outlines our future research plans. An extended abstract of this paper was presented

at TIME’97 (Mancarella et al. 1997).

2. Operators for com bining logic theories

Program composition operations have been thoroughly investigated in Brogi (1993)

and Brogi et al. (1994), where both their meta-level and their bottom-up semantics

are studied and compared. Here, we adopt the meta-level de®nition of the opera-

tions, which is simply obtained by adding new clauses to the well-known vanilla

meta-interpreter for logic programs. Stated otherwise, in this view compositions of

programs are realized by a meta-interpreter which combines separate program s at

the meta-level, without actually building a new program. The reading of the re-

sulting meta-interpreter is straightforward and, most importantly, the meta-logical

de®nition shows that the multi-theory framework can be expressed from inside logic

programming itself. We provide two operators to combine programs: union Ä and

intersection .́ Formally, we de®ne the set of program expressions Exp with the

following abstract syntax:

Exp : := P j Exp ÄExp j Exp ´Exp

where P is a plain program, i.e. a collection of clauses.

Following Bowen and Kowalski (1982), we employ the two-argument predicate

demo to represent provability. Namely, demo (x, y) represents that the formula y is

provable in the program expression x.

The vanilla meta-interpreter (Sterling and Shapiro 1986) is the simplest application
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of meta-programming in logic. A general formulation of the vanilla meta-interpreter

can be given by means of the demo predicate.

demo (x, empty ) ¬ (1)

demo (x, (y, z )) ¬demo (x, y), demo (x, z ) (2)

demo (x, y) ¬clause(x, y ¬z ), demo (x, z ) (3)

The unit clause (1) states that the empty goal, represented by the constant symbol

empty , is solved in any program x. Clause (2) deals with conjunctive goals. It states

that a conjunction (y, z ) is solved in the program x if y is solved in x and z is solved

in x. Finally, clause (3) deals with the case of atomic goal reduction. To solve an

atomic goal y , a clause from the program x is chosen and the body of the clause is

recursively solved in x.

We adopt the simple naming convention used in Kowalski and Kim (1991). Object

programs are named by constant symbols, denoted by capital calligraphic letters

such as P and Q . Object level expressions are represented by themselves at the

meta-level. In particular, object level variables are denoted by meta-level variables,

according to the so-called non-ground representation (Hill and Lloyd 1989). An object

level program P is represented at the meta-level by a set of axioms of the kind

clause(P , A ¬B ) ¬, one for each object level clause A ¬B in P . For example, we

have the following object and meta-level representations, N and N m respectively,

of the logic program for natural numbers.

N : nat(zero) ¬ N m : clause(N , nat(zero) ¬empty ) ¬
nat(s(x)) ¬nat(x) clause(N , nat(s(x)) ¬nat(x)) ¬

Program composition operations can be implemented by meta-logic in a simple and

concise way. Each program composition operation is represented at the meta-level

by a functor. The meaning of each functor is de®ned by new clauses added to the

vanilla meta-interpreter.

clause(x Äy , z ¬w ) ¬clause(x, z ¬w ) (4)

clause(x Äy , z ¬w ) ¬clause(y, z ¬w ) (5)

clause(x ´y, (z ¬u, v)) ¬clause(x, z ¬u), clause(y, z ¬v) (6)

In the extended framework, the ®rst argument of clause represents a program

expression, rather than a single program as in the case of the pure vanilla meta-

interpreter.

The meaning of the clauses (4)±(6) is straightforward. Informally, union and

intersection mirror two forms of cooperation among program expressions. Clauses

(4) and (5) de®ne the meta-level implementation of the operation Ä, where either

expression may be used to perform a computation step. For instance, a clause

z ¬w belongs to the meta-level representation of P ÄQ if it belongs either to

the meta-level representation of P or to the meta-level representation of Q . In

the case of intersection, both expressions must agree to perform a computation

step. This is obtained in clause (6) exploiting the basic uni®cation mechanism of

logic programming and the non-ground representation of object level programs. A

program expression E can be queried by demo (E , G), where G is an object level goal.
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3. Introducing time intervals

In this section we extend the multi-theory framework in order to handle temporal

information. We associate time intervals to clauses of object-level program s. The

meta-level representation of object-level programs must be extended accordingly as

well as the meta-interpreter of the previous section.

Our temporal model can be classi®ed as historical in the taxonomy of Snodgrass

(1992). Time intervals represent valid time, that is the time for which information

models reality and corresponds to the actual time for which a relationship holds in

the real world. This allows us to query the database at a certain date in the past to

obtain the information that held in that period.

We work on discrete time points. Actual time points are represented by elements

of the set N of natural numbers. A special constant a is used to represent a time

point later than any others. An interval is a pair [a, b] , where a 2 N and b 2 NÄfag .

Notice that an interval open to the future is represented by [a, a] . The order relation

between time points is axiomatized as follows:

timepoint(0) ¬ x %x ¬
timepoint(s(x)) ¬ timepoint(x) x %y ¬ x < y

x < a ¬ timepoint(x) x > y ¬ y < x

0 < s(x) ¬ timepoint(x) x &y ¬ y %x

s(x) < s(y) ¬ timepoint(x), timepoint(y), x < y

The relation of inclusion between time intervals is denoted by v and de®ned as

[a, b] v [ c, d] ¬non empty ([a, b] ), non empty ([c, d]), a &c, b %d,

where the predicate non empty states that an interval is not empty and it is de®ned

as

non empty ([a, b] ) ¬a %b.

Moreover, intersection of time intervals is denoted by u and it is axiomatized as

follows:

[a, b] u [c, d] = [ c, b] ¬ non empty ([a, b] ), non empty ([c, d] ), a %c, c %b, b %d

[a, b] u [c, d] = [ c, d] ¬ non empty ([a, b] ), non empty ([c, d] ), a %c, d < b

[a, b] u [c, d] = [a, d] ¬ non empty ([a, b] ), non empty ([c, d] ), c %a, a %d, d %b

[a, b] u [c, d] = [a, b] ¬ non empty ([a, b] ), non empty ([c, d] ), c %a, b < d

Notice that intersection is de®ned only on overlapping intervals. Therefore when

we consider an interval obtained by intersecting diŒerent intervals, i.e. u i= 1,n Ii, we

mean it is not empty.

An object level program is still a collection of clauses named by a constant symbol.

Each clause is now equipped with a time interval representing the period of time in

which the clause holds. At the object level, an extended clause looks like

A ¬B1, . . . , Bn * [a, b] .

According to the above extension, the meta-level interpreter of the previous section

must be extended by taking time intervals into account. The predicate demo now

has an extra-argument denoting a time interval: demo (E , G, I ) means that the goal

G holds with respect to the program expression E and within the time period I . The

extended meta-interpreter is de®ned by the following clauses.

demo(x, empty , I ) ¬non empty (I ) (7)
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demo(x, (y , z ), I ) ¬demo(x, y, K ), demo(x, z, J ), I v K u J (8)

demo(x, y, I ) ¬clause(x, y ¬z, K ), demo(x, z, J ), I v K u J (9)

clause(x Äy , z ¬w, I ) ¬clause(x, z ¬w , K ), I v K (10)

clause(x Äy, z ¬w, I ) ¬clause(y, z ¬w, K ), I v K (11)

clause(x ´y, (z ¬u, v), I ) ¬clause(x, z ¬u, K ), clause(y, z ¬v, J ), I v K u J (12)

A clause x ¬y *K of a plain program P is now represented at the meta-level by

clause(P , x ¬y, I ) ¬I v K (13)

Note that the condition non empty(I) is not needed in clauses (8)±(13) since it is

subsumed by the fact that I v H for some H .

4. Abstract semantics

Meta-logic provides a semantics to program expressions extended with time intervals

in the sense that its axioms tell us how to compute goals of the form

demo (E , G, I )

The meta-logical axioms de®ne a new SLD procedure, capable of handling pro-

gram expressions and time intervals, in terms of the basic SLD of logic programming.

An important question is whether it is possible to give a declarative semantics to

program expressions. The results reported in Brogi and Turini (1994) show, how-

ever, that the plain minimal Herbrand model semantics of logic program s do not lift

smoothly to program expressions. Fundamental properties of semantics, like compo-

sitionality and full abstraction, are de®nitely lost. Intuitively speaking, the semantics

of program expressions intimately depends on the structure of the plain programs

involved, while the minimal Herbrand model semantics forgets it completely. The

way around this problem is to use a higher order semantics. The semantics of a

program expression is assumed to be the immediate consequence operator associated

to it, i.e. a function from Herbrand interpretations to Herbrand interpretations. The

immediate consequence operator of a program expression can be compositionally

de®ned in terms of the immediate consequence operator of the sub-expressions. In

Brogi and Turini (1994) full abstractness properties of this semantics are also shown.

The minimal model semantics can be computed by taking the least ®xed point of

the immediate consequence operator associated to a program expression.

Here we extend the immediate consequence operator of program expressions to

time intervals. In order to do that we consider extended interpretations made up of

atom-interval pairs. The immediate consequence operator F is a function:

F : Exp ®Ã(V3I nt) ®Ã(V3I nt),

where V denotes the Herbrand base, Ã the power-set constructor and I nt the set of

closed or right unlimited intervals of natural numbers, i.e.

I nt = fA 2 Ã(N) j (9a, b 2 N. a %b ^ 8x. x 2 A ÜÞ a %x %b)

_ (9a 2 N. 8x. x 2 A ÜÞ a %x)g .
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In the following, elements of I nt will be simply called intervals. It is worth noting

that an interval is never empty and that the intersection of intervals is an interval if

and only if it is not empty.

Given a program expression E , we write F E to denote F (E ). The de®nition of

F E is given by cases, according to the structure of E .

F (E is a plain program P )

F P (I ) =

(A, I ) j
9(B1 , I1), . . . , (Bn, In ) 2 I ^ A ¬B1 , . . . , Bn*I0 2 ground (P ) ^
I = j = 0,n Ij ^ I Ð [

where ground (P ) denotes the set of ground instances of clauses of P .

F (E = E1 ÄE2 )

F E1 ÄE2
(I ) = F E1 (I ) ÄF E2 (I )

F (E = E1 ´E2 )

F E1 É2
(I ) = F E1 (I ) 0́ F E2 (I )

where I 1
0́ I 2 = f (A, I ) j 9(A, I1) 2 I 1 , 9(A, I2) 2 I 2 : I = I1 ´I2 ^ I Ð [g

The de®nition for plain programs diŒers from the standard logic programming

operator just for the conditions on intervals: an atom holds in an interval I , if there

exists a clause, holding in a certain interval K , whose head is A, the atoms of the

body are solvable and hold in intervals whose intersection with K contains I . The

set of immediate consequences of a union of program expressions is the set-theoretic

union of the immediate consequences of each program expression. Finally, the set of

immediate consequences for the intersection of program expressions consist of atoms,

which are consequences of both program expressions and hold in the (non-empty)

interval which is the intersection of the intervals associated to the consequences.

To be rigorous, we should use diŒerent notations for terms (i.e. pairs of naturals)

denoting intervals in the language (syntactic intervals), and sets in the model (seman-

tic intervals), but this would make the notation heavy and cumbersome. Actually, it

is always clear from the context whether we are referring to syntax or to semantics.

Moreover, note that the set I nt with the operations Í and ´ is a model of the

theory de®ning the axiomatization of the order relation between points, inclusion

and intersection between syntactic intervals. In other words, as one can trivially

prove, for any intervals I , J , K

I v J is provable iŒ I ÍJ

J u K = I iŒ J ´K = I .

It is worth recalling that in the second statement above I Ð [ since I is an interval.

4.1. Soundness

We are now in the position of proving the soundness of the meta-logical semantics of

the program expressions with respect to the abstract semantics. Notice that, since the

meta-logical de®nition axiomatizes a top-down operational semantics for program

expressions, the proof corresponds to showing the equivalence of computing program

expressions top-down and bottom-up.

In the following we will use P , Q and R to denote program expressions, A, B

(possibly with subscripts) to denote ground atoms, I , J , K and H (possibly with

subscripts) to denote ground intervals and, given a program expression P , V will
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denote the meta-program containing the meta-level representation of the object

level programs occurring in P , the axiomatization of the order relation between

time points, the subinterval (v ) and intersection (u) relations between intervals and

the vanilla meta-program consisting of the clauses (7)±(12).

In order to prove the soundness of the meta-interpreter, we ®rst show two lemmas.

The ®rst one states that if a conjunctive goal is provable in an interval I , then its

atomic conjuncts are provable in intervals whose intersection contains I .

Lem m a 1. Let P be a program expression and let V be the corresponding meta-

program. For any object level atomic formulas B1, . . . , Bn and any ground interval I the

following statement holds:

for all h demo(P , (B1, . . . , Bn ), I ) 2 T h
V =Þ 9I1 , . . . , In :

fdemo(P , B1 , I1 ), . . . , demo(P , Bn , In)g ÍT h
V ^ I Í j = 1,n Ij .

Proof. For n = 1 the implication trivially holds. For n & 2 the proof can be

carried out by induction on h exploiting the de®nition of TV and clause (8) of the

meta-interpreter. e

The second lemma states that if we can derive a clause A ¬B1, . . . , Bn from the

meta-program V and B1, . . . , Bn belong to an interpretation I , then the head of the

clause, A, is derivable from P and it holds in an interval containing the intersection

of the validity intervals of the clause and of its body.

Lem m a 2. (Virtual clauses lemma): Let P be a program expression and let V be the

corresponding meta-program. For any object level atomic formulas A, B1, . . . , Bn, any

ground intervals I0, . . . , In and any object level interpretation I , the following statement

holds:

clause(P , (A ¬B1 . . . Bn ), I0) 2 T x
V ^ f (B1 , I1 ), . . . , (Bn, In)g ÍI ^

j́ = 0,n Ij not empty =Þ 9H : (A, H ) 2 F P (I ) ^ j́ = 0,nIj ÍH .

Proof. See Appendix.

The soundness of the meta-logical implementation states that an object level atom

holding in a certain interval H is derivable from P if its meta-level representation

holding in an interval I contained in H is derivable from V .

Theorem 1. (Soundness): Let P be a program expression and let V be the correspond-

ing meta-program. For any object level atomic formula A and any ground interval I ,

the following statement holds:

demo(P , A, I ) 2 T x
V =Þ 9H : (A, H ) 2 F x

P ^ I ÍH .

Proof. We ®rst show that for all p

demo(P , A, I ) 2 T
p
V =Þ 9H : (A, H ) 2 F x

P ^ I ÍH . (14)

The proof is by induction on p.

(Base case). Trivial since T 0
V = [.

(Inductive case). Assume that demo(P , A, I ) 2 T
p
V =Þ 9H : (A, H ) 2 F x

P ^ I ÍH.

Then:
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demo(P , A, I ) 2 T
p+ 1
V

ÜÞ fde®nition of T a
V g

demo(P , A, I ) 2 TV (T
p
V )

ÜÞ fde®nition of TV and clause (9)g
9K , J : (demo(P , A, I ) ¬clause(P , A ¬G, K ),

demo(P , G, J ), I v K u J ) 2 ground (V ) ^
fclause(P , A ¬G, K ), demo(P , G, J )g ÍT

p
V ^ I ÍK ´J

=Þ fLemma 1 and G = B1, . . . , Bng
9I1, . . . , In : f clause(P , (A ¬B1 , . . . , Bn), K ), demo(P , B1, I1 ), . . . ,

demo(P , Bn , In)g ÍT
p
V ^ J Í j = 1,n Ij ^ I ÍK ´J

=Þ f inductive hypothesisg
9H1 , . . . , Hn : clause(P , (A ¬B1 , . . . , Bn), K ) 2 T

p
V ^ f (B1 , H1 ), . . . ,

(Bn, Hn)g ÍF x
P ^ I1 ÍH1 ^ . . . ^ In ÍHn ^ J Í j = 1,n Ij ^ I ÍK ´J

=Þ fmonotonicity of TV and I ÍK ´J and J Í j = 1,n Ij g
clause(P , (A ¬B1, . . . , Bn ), K ) 2 T x

V ^ f (B1, H1), . . . , (Bn, Hn)g ÍF x
P ^

I1 ÍH1 ^ . . . ^ In ÍHn ^ I ÍK ´
j = 1,n Ij

=Þ fLemma 2 and K ´
j = 1,n Hj is not empty because K ´

j = 1,n Ij

ÍK ´
j = 1,n Hj and K ´

j = 1,n Ij is not empty since it contains I g
9H : (A, H ) 2 F P (F x

P ) ^ (K ´ j = 1,n Hj ) ÍH ^
I1 ÍH1 ^ . . . ^ In ÍHn ^ I ÍK ´

j = 1,n Ij

=Þ fF x
P is a ®xpoint of F P and K ´

j = 1,n Ij ÍK ´
j = 1,n Hj g

9H : (A, H ) 2 F x
P ^ I ÍH

We are now able to prove the soundness of the meta-logical semantics of the program

expressions with respect to the abstract semantics.

demo(P , A, I ) 2 T x
V

=Þ f de®nition of T x
V g

9p : demo(P , A, I ) 2 T
p
V

=Þ f Statement (14)g
9H : (A, H ) 2 F x

P ^ I ÍH e

4.2. Completeness

In order to prove the completeness of the meta-interpreter we ®rst prove a lemma

stating that if A holds in the interval I in a given interpretation I , we can deduce a

clause at the meta-level such that its head is A and the body and the related interval

in which it holds belong to I .

Lem m a 3. Let P be a program expression and let V be the corresponding meta-

program. For any object level atomic formula A, any ground interval I and any object

level interpretation I , the following statement holds:

(A, I ) 2 F P (I ) =Þ 9(B1 , I1), . . . , (Bn, In ), I0 : clause(P , (A ¬B1 , . . . , Bn), I0 ) 2 T x
V

^f (B1 , I1), . . . , (Bn, In )g ÍI ^ I = j = 0,n Ij .

Proof. See Appendix.

Now we can prove the completeness of the meta-logical semantics of the program

expressions with respect to the abstract semantics.
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Theorem 2. (Completeness): Let P be a program expression and let V be the corre-

sponding meta-program. For any object level atomic formula A and any ground interval

I , the following statement holds :

(A, I ) 2 F x
P =Þ demo(P , A, I ) 2 T x

V .

Proof. We ®rst show that for all h

(A, I ) 2 F h
P =Þ demo(P , A, I ) 2 T

x
V . (15)

The proof is by induction on h.

(Base case). Trivial since F 0
P = [.

(Inductive case). Assume that (A, I ) 2 F h
P =Þ demo(P , A, I ) 2 T x

V

Then:

(A, I ) 2 F h+ 1
P

ÜÞ fde®nition of F a
P g

(A, I ) 2 F P (F h
P )

=Þ fLemma 3g
9(B1 , I1), . . . , (Bn, In ), I0 : clause(P , (A ¬B1, . . . , Bn ), I0 ) 2 T x

V ^
f (B1, I1 ) . . . , (Bn, In)g ÍF h

P ^ I = j = 0,n Ij

=Þ f inductive hypothesisg
clause(P , (A ¬B1, . . . , Bn ), I0 ) 2 T x

V ^
fdemo(P , B1 , I1), . . . , demo(P , Bn, In )g ÍT x

V ^ I = j = 0,n Ij

=Þ fde®nition of TV and clause (8) used n 1 times and

T x
V is a ®xpoint of TV g

clause(P , (A ¬B1, . . . , Bn ), I0 ) 2 T x
V ^ demo(P , (B1 , . . . , Bn ),u j = 1,n Ij ) 2 T x

V
^ I = j = 0,n Ij

=Þ fde®nition of TV and clause (9) and T x
V is a ®xpoint of TV g

demo(P , A, I ) 2 T x
V

We now prove the completeness of the meta-logical semantics of the program

expressions with respect to the abstract semantics.

(A, I ) 2 F x
P

=Þ f de®nition of F x
P g

9h : (A, I ) 2 F h
P

=Þ f statement (15)g
demo(P , A, I ) 2 T x

V e

Theorems 1 and 2 show that a program expression P and its corresponding

meta-program V have a comparable deductive capability with respect to object

level goals. However, the meta-interpreter allows one to prove atoms on smaller

intervals than the associated program P does. For instance, consider the program

P consisting of the clause

p(a) ¬*[0, 10] .

The abstract semantics is F x
P = f (p(a), f 0, 1, 2, . . . , 10g )g . On the other hand T x

V Ê
fdemo(P , p(a), I ) j I v [0, 10] g .
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5. Application to legal reasoning

In this section we show the usefulness of our meta-logic by showing its application

to legal reasoning.

The basic idea is that laws and rules are naturally represented in separate theories

and that they can be combined in ways that are necessarily more complex than

plain merging. Time is another crucial ingredient in the de®nition of laws and rules.

Quite often, rules have to refer to instants of time and, furthermore, they have a

validity for a ®xed period of time. This is especially true for laws and rules which

concern taxation and government budget related regulations in general.

For the sake of clarity, in the following examples we write object programs

as named collections of object clauses (instead of using the clumsier meta-level

representation), and we use year dates instead of integer time points. Conceptually,

the axiomatization of section 3 goes through just by using a more sophisticated

successor function. In the sequel, we will use the relations before and after over dates

with the intended semantics, which can be given at the meta-level by extending the

demo predicate in the obvious way. In the actual implementation, as meta-interpreter

in Sicstus Prolog, the operations on intervals are such that the maximal interval that

satis®es the operation is computed. For example, [2, 8] v [3, x] binds x to a, and

[2, x] v [1, 10] binds x to 10.

We start with a classical exam ple in the ®eld of legal reasoning, a small part of the

British Nationality Act, where the simple partitioning of the knowledge in separate

theories, and the use of the basic union operator allow one to use the temporal

information in an orderly way.

The statement
x obtains the British Nationality at time t

if x is born in UK at time t and

t is after commencement and

y is parent of x and

y is a British citizen at time t

or y is a British resident at time t
is translated into the following theory.

BNA:

get-citizenship(x,t) ¬
born(x,UK,t), after(t,< Jan 1 1955> ), parent(y,x), british-citizen(y,t) *
[< Jan 1 1955> ,a]

get-citizenship(x,t) ¬
born(x,UK,t), after(t,< Jan 1 1955> ), parent(y,x), british-resident(y,t) *
[< Jan 1 1955> ,a]

Now, we can encode in a separate theory the data proper of a speci®c individual,

say John.

John:

born(John,UK,< Aug 10 1969> ) ¬* parent(Bob,John) ¬*
[< Aug 10 1969> , a] [< Aug 10 1969> , a]

british-citizen(Bob,t) ¬
after(t,< Sept 6 1940> ) *
[< Sept 6 1940> , a]
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We can now use the union operator to inquiry about the citizenship of John,

¬demo(BNA Ä John, get-citizenship(John,t), )

obtaining as result t = < Aug 10 1969> .

The use of the intersection operator provides a natural way of imposing constraints

on existing theories. In general, suppose a theory is given that establishes the validity

of a certain property, by means of clauses of the form

property(x,y,z) ¬ Body * [a,b] .

By intersecting the above theory with a theory containing a clause of the form

property(x,y,z) ¬ Body 0 * [c,d].

we constrain the property in two respects. The intersection operator on theories

imposes that both Body and Body 0 must hold in order to derive the property and

that this applies only if the time intervals [a, b] and [c, d] do overlap. Intuitively, this

corresponds to a new object level rule

property(x,y,z) ¬ Body, Body 0 * I

where I v [a,b] u [c,d].

In the following examples we show the above points. The ®rst example concerns

a body of Italian regulations dealing with paying taxes on real estate transactions,

called Invim. The original regulation depends on time calculations, since the amount

of taxes depends on the period of ownership of the real estate property. Furthermore,

the law was abolished in 1992, that means that the rules still apply but only for the

period antecedent to 1992.

Our approach allows us to have a theory containing the original regulation and

to have two other theories, one containing the constraints due to the decisions taken

in 1992, and the other containing the new policy. It is important to notice that the

design of the constraining theory can be done without taking care of the details

(which may be quite complicated) embodied in the original law.

The following theoryÐ InvimÐcontains a sketch of the original body of regula-

tions.

Invim:

due(amount,x,property) ¬ compute(amount,x,property,t1,t2) ¬. . . *
buys(x,property,t1), [< Jan 1 1950> ,a]

sells(x,property,t2),

compute(amount,x,property,t1,t2) *
[< Jan 1 1950> ,a]

In order to adapt the above body of regulations to the new situation imposed by

the 1992 decisions, we construct two new theories. The ®rst one is designed as a

set of constraints on the applicability of the original rules, while the second one is

designed to embody new rules capable of handling the new situation.

Constraints:

due(amount,x,property) ¬ compute(amount,x,property,t1,t2) ¬*
sells(x,property,t), [< Jan 1 1993> ,a]

before(t,< Dec 31 1992> ) *
[< Jan 1 1993> ,a]
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The ®rst rule speci®es that the relation due is computed, i.e. its original body is

computed, provided that the selling date is antecedent to 31 December 1992. The

second rule speci®es that the rules for compute, whatever number they are, and

whatever complexity they have, carry on unconstrained to the new version of the

regulation.

Additions:

due(amount,x,property) ¬
buys(x,property,t1),

sells(x,property,t2),

before(t1,< Dec 31 1992> ),

after(t2,< Jan 1 1993> ),

compute(amount,x,property,t1,< Dec 31 1992> ) *
[< Jan 1 1993> ,a]

This rule handles the case of selling a property, bought before 31 December 1992,

after 1 January 1993.

Now, we consider a separate theory representing the transactions regarding a

speci®c individual, say Mary, who bought an apartment on 8 March 1965 and sold

it on 2 July 1997.

Trans1:

buys(M ary,Apt8,< Mar 8 1965> ) ¬* sells(Mary,Apt8,< Jul 2 1997> ) ¬*
[< M ar 8 1965> ,a] [< Jul 2 1997> ,a]

The query

¬demo(Invim Ä Trans1, due (amount,Ma ry,Apt8), )

yields the amount, say 32.1, that Mary has to pay when selling the apartment

according to the old regulations. On the other hand, the query

¬demo(((Invim ´ Constraints) Ä Additions) Ä Trans1, due(amount,Ma ry,Apt8), )

yields the amount, say 27.8, according to the new regulations.

In the following transaction Paul buys the ¯at on 1 January 1995.

Trans2:

buys(Paul,Apt9,< Jan 1 1995> ) ¬* sells(Paul,Apt9,< Sep 12 1996> ) ¬*
[< Jan 1 1995> ,a] [< Sep 12 1996> ,a]

¬demo(Invim Ä Trans2, due(amount,Paul,Apt9), )

amount = 1.7

¬demo(((Invim ´ Constraints) Ä Additions) Ä Trans2, due(amount,Paul,Apt9), )

no

If we query the theory Invim Ä Trans2 Paul must pay a certain amount of tax,

say 1.7, but if we consider the updated regulation he must not pay the Invim tax

because he bought and sold the ¯at after 31 December 1992. This is why the answer

to the query with respect to the theory ((Invim ´ Constraints) Ä Additions) Ä Trans2

is no.
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Trans3:

buys(Frank,Apt10,< May 12 1970> ) ¬* sells(Frank,Apt10,< Oct 14 1991> ) ¬*
[< May 12 1970> ,a] [< Oct 14 1991> ,a]

¬demo(Invim Ä Trans3, due(amount,Frank,Apt10), )

amount = 21.3

¬demo(((Invim ´Constraints) ÄAdditions) ÄTrans3, due(amount,F rank,Apt10), )

amount = 21.3

In transaction 3 the computed answers are the same for both queries because the

¯at has been sold before the abolition of the Invim tax.

The third exam ple deals with buy & sell subsidized houses. A person can buy a

subsidized house if this house has been assigned to him or he lives with a person

who has this house and he agrees to sell it. After 7 July 1993 to buy a subsidized

house, it is necessary that the buyer lives in the house for more than ®ve years.

The theory Legal-buyer contains the features of the person who can buy a house.

Legal-buyer:

can-buy(x,home) ¬ can-buy(x,home) ¬
assignee(x,home) * assignee(y,home),

[< Jan 10 1980> ,a] lives-with(x,y,home),

agrees(x,y,home) *
[< Jan 10 1980> ,a]

The theory Constraints contains the further constraints imposed after 7 July 1993.

Constraints:

can-buy(x,home) ¬
®led-request(x,home,t1),

lives-in-since(x,home,t2),

diŒyears(t1,t2,delta),

greaterthan(delta, 5) *
[< Jul 7 1993> ,a]

Now, we consider a person who wants to buy a subsidized house.

Marco:

assignee(Luigi,H26) ¬* lives-with(Marco,Luigi,H26) ¬*
[< Jan 1 1987> ,a] [< Jan 8 1988> ,a]

agrees(Marco,Luigi,H26) ¬* lives-in-since(Marco,H26,< Jan 8 1988> ) ¬*
[< Apr 3 1995> ,a] [< Jan 8 1988> ,a]

The theory Appl283 is formed by a single clause that records the request.

Appl283 :

®led-request(Marco,H26, < Feb 2 1995> ) ¬*
[< Feb 2 1995> ,a]
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We can inquire of the system whether Marco can buy the house H26 in the following

way

¬demo(((Legal-buyer ´Constraints) ÄAppl283 ) ÄMarco, can-buy(Marco,H26),i)

i = [< Apr 3 1995> ,a]

From 3 April 1995 Marco can legally buy the house H 26.

6. D erived operators on time intervals

In order to make easier the selection of information holding in a certain interval we

introduce the following operator.

D e®nition 1. Let P be a program and I a ground interval.

P ¯ I = P ´1I
P ,

where 1I
P is a theory de®ned as follows:

for all p de®ned in P with arity n

p(x1 , . . . , xn) ¬ * I .

This operator exploits the features of the intersection operator already pointed out

in the previous section. What we do is to select only the clauses belonging to P

that hold in I or in a subinterval of I and we restrict their validity time to such an

interval.

Consider the example of the British Nationality, we want to know whether John

was a British citizen on 10 September 1973. The desired query is

¬demo((BNAÄJohn ) ¯ [< Sept 10 1973> ,< Sept 10 1973> ] , get-citizenship(John, ), ).

The answer is yes because John got his citizenship on 10 August 1969. An

equivalent way to express this query is

¬demo((BNA ÄJohn ), get-citizenship(John, ),[< Sept 10 1973> ,< Sept 10 1973> ]),

where we temporally constrain the validity time of the goal itself rather than the

theory of the goal. The advantage of having the operator P ¯ I is that we can ask

for query of the kind A 2 P ¯ t1 ÄP ¯ t2 in order to join, for instance, information

derived in diŒerent dates.

Another useful application of the intersection operator consists in modelling

updates. Suppose that we want to represent the fact that Frank is a researcher in

mathematics, then he is promoted and becomes an assistant professor. To model

information that can be updated we use unit clauses. In our formalism we de®ne a

theory Frank that records the information associated to Frank as researcher.

Frank:

researcher(maths) *
[< Mar 8 1993> ,a]

In M arch 1996 Frank became an assistant professor. In order to modify the

information contained in the theory Frank, we build this new theory:
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(Frank ´ f researcher(maths) * [ ,< 29 Feb 1996> ] g ) Ä
fassistant professor(maths) * [< 1 Mar 1996> ,a]g

We have used an unnamed theory that is represented by the following meta-level

clause.

demo(f X ¬Y *I g , X ¬Y , K ) ¬K v I

This update is similar to add and delete a ground atom. For instance in

L D L + + (Zaniolo et al. 1993) we can express such a change by solving the goal

researcher(maths),+ assistant prof essor(maths).

The advantage of our approach is that we do not change directly the clauses of

the theory Frank but we compose the old theory with a new one that represents

the current situation. Therefore we preserve even the state of the database before 1

March 1996, keeping faith to the historical dealing of information.

¬demo((Frank ´ f researcher(maths) * [ , < 29 Feb 1996> ] g ) Ä
fassistant professor(maths) * [< 1 Mar 1996> , a]g ,

researcher(X ), [< 23 Feb 1994> , < 23 Feb 1994> ])

X = maths

¬demo((Frank ´ f researcher(maths) * [ , < 29 Feb 1996> ] g ) Ä
fassistant professor(maths) * [< 1 Mar 1996> , a]g ,

researcher(X ), [< 12 Mar 1996> , < 12 Mar 1996> ])

no.

The ®rst query inquires the updated database before the advance in career of Frank,

conversely, the second shows how information in the database has been modi®ed.

7. Reasoning over joined intervals

The meta-interpreter of section 3 does not allow us, given a program expression,

to compute a maximal interval in which a query holds. For exam ple, consider the

following theories representing two library databases:

DB1:

borrow(Mary,The Twelfth Night) ¬*
[< May 12 1995> ,< Jun 12 1995> ]

DB2:

borrow(Mary,The Twelfth Night) ¬*
[< Jun 12 1995> , < August 1 1995> ]

By querying the union of the above theories we would obtain the period of time in

which Mary has borrowed The Twelfth Night,

¬demo (DB1 ÄDB 2, borrow(Mary,The Twelfth Night), i).

According to the semantics considered so far, the above query computes two answers:

i = [< May 12 1995> ,< Jun 12 1995> ] i = [< Jun 12 1995> ,< August 1 1995> ]
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Actually, M ary has borrowed the book from 12 M ay 1995 until 1 August 1995

which can be obtained by joining the previous answers and we would like to obtain

also such an interval as a computed answer substitution.

Reasoning over joined intervals requires ®rst to axiomatize the join of intervals,

denoted by t.

[a, b] t [c, d] = [a, d] ¬ non empty ([a, b] ), non empty ([c, d] ), a %c, c %b + 1, b %d

[a, b] t [c, d] = [a, b] ¬ non empty ([a, b] ), non empty ([c, d] ), a %c, d < b

[a, b] t [c, d] = [ c, b] ¬ non empty ([a, b] ), non empty ([c, d] ), c %a, a %d + 1, d %b

[a, b] t [c, d] = [ c, d] ¬ non empty ([a, b] ), non empty ([c, d] ), c %a, b < d

It is worth noting that join is de®ned on overlapping intervals or on meeting

intervals that is [a, b] and [b + 1, c] and it is commutative. Unfortunately, join of

intervals is not associative. For instance, consider the intervals I1 = [1, 5] , I2 = [2, 3]

and I3 = [6, 7] , then (I1 t I2 ) t I3 = [1, 7] but I1 t (I2 t I3) does not exist because

I2 and I3 are neither overlapping nor meeting intervals. We write j = 1,n Ij to denote

((I1 t I2 ) . . . t In).

Set-theoretic union restricted to I nt is the semantic counterpart of t, i.e. for any

intervals I , J , K

K t J = I is provable iŒ K ÄJ = I .

Note that union of intervals, although it is surely non-empty as a set, is not

necessarily an interval since the original intervals may be neither overlapping nor

meeting.

However, when joining more than two intervals, the lack of associativity for t
breaks the correspondence with set-theoretic union Ä. In fact it is still true that if

((I1 t I2 ) t I3 ) = K then j = 1,3 Ij = K but the converse in general does not hold.

Anyway, it is not di�cult to prove that if the union of I1, . . . , In is an interval K

then joining I1, . . . , In in a suitable order, we can exactly obtain K as the result, i.e.

if

j = 1,n

Ij = K ^ K 2 I nt then 9 an ordering i1 , . . . , in of 1, . . . , n

such that ((Ii1 t Ii2 ) . . . t Iin ) = K .

As an easy consequence, if (I1 t I2 ) t I3 and I1 t (I2 t I3 ) are de®ned then they

coincide.

Finally in the sequel we will use the following simple property.

Proposition 3. Let I1, . . . , In , H1 , . . . , Hn be intervals such that Ij Í Hj for each j =

1 . . . n and j = 1,n Ij is an interval. Then j = 1,n Hj is an interval containing j = 1,n Ij .

We can now extend the meta-interpreter to take into account joined intervals by

adding the following clause:

demo(x, y, I ) ¬demo(x, y, K ), demo(x, y, J ), I = K t J (16)

In the previous example, we also obtain i = [< May 12 1995> ,< August 1 1995> ] as

a computed answer substitution to the query

¬demo (DB1 ÄDB 2, borrow(Mary,The Twelfth Night), i).

As far as the abstract semantics is concerned, given a program expression P we

de®ne an immediate consequence operator F * : Exp ®Ã(V3I nt) ®Ã(V3I nt)
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as follows:

F *
P (I ) = f (A, I ) j 9(A, I1 ), . . . , (A, In) 2 F P (I ) ^ I =

j = 1,n

Ij ^ I 2 I ntg .

Again, F *
P denotes F *(P ). The idea is that if an atom A holds in a set of intervals

f I1 , . . . , Ing and j = 1,n Ij is the interval I then A holds in I .

Now we want to prove that the meta-logical semantics (containing clauses (7)±(12)

and (16)) is sound and complete with respect to the abstract semantics F *. We follow

the line of the proofs of section 4.

Let P be a program expression, in the following we will denote with V * the

meta-program containing the meta-level representation of the object level programs

occurring in P , the axiomatization of the order relation between time points, the

subinterval (v ), join (t) and intersection (u) relations between intervals and the

vanilla meta-program consisting of the clauses (7)±(12) and (16).

Rem ark: Let P be a program expression and let V and V * be the corresponding

meta-programs and I any object level interpretation. The following statements hold:

(i) F P (I ) ÍF *
P (I );

(ii) TV (I ) ÍT V * (I ).

Therefore

(iii) F x
P ÍF *

P
x ;

(iv) T x
V ÍT x

V *

Lem m a 4. Let P be a program expression and let V and V * be the corresponding

meta-programs. For any object level atomic formulas A, B1 , . . . , Bn and any ground

interval I0 , the following statement holds:

clause(P , (A ¬B1, . . . , Bn ), I0 ) 2 T x
V ÜÞ clause(P , (A ¬B1, . . . , Bn ), I0 ) 2 T x

V * .

Proof. (=Þ) Trivial for Statement (iv) of Remark 1.

(Ü= ) Trivial by observing that the de®nitions of the predicate clause are not

aŒected by adding clause (16). e

Corollary 1. Let P be a program expression and let V * be the corresponding meta-

program. For any object level atomic formulas A, B1, . . . , Bn , any ground intervals

I0, . . . , In and any object level interpretation I , the following statement holds:

clause(P , (A ¬B1 , . . . , Bn), I0 ) 2 T x
V * ^ f (B1, I1 ), . . . , (Bn, In)g ÍI ^

j́ = 0,n Ij not empty =Þ 9H : (A, H ) 2 F *
P (I ) ^ j́ = 0,nIj ÍH

Proof. Immediate from Lemma 4, Lemma 2 and Statement (i) of Remark 1. e

We can reformulate Theorems 1 and 2 in order to prove the equivalence between

the extended meta-interpreter and the above de®nition of F *
P . First we prove a

generalization of Lemma 1 about conjunctive goals. If a conjunctive goal, composed

by n atoms and holding in an interval I , is derivable from the meta-interpreter V *,

then for each conjunct there exists a set of intervals such that their union is an

interval, the conjunct holds in each such interval and is derivable from V , i.e. from

the meta-interpreter without clause (16). Moreover, the intersection of the union of

such sets of intervals is not empty and it is an interval.
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Lem m a 5. Let P be a program expression and let V and V * be the corresponding

meta-programs. For any object level atomic formulas B1, . . . , Bn and any ground interval

I , the following statement holds:

for all h demo(P , (B1, . . . , Bn ), I ) 2 T h
V * =Þ 9I 1

1 , . . . , I 1
i1 , . . . , I n

1 , . . . , I n
in , q :

fdemo(P , Bj , I j
r ) j j = 1..n, r = 1..ij g ÍT

q
V ^

I Í j = 1,i1 I 1
j ´. . . ´

j = 1,in I n
j ^

r= 1,ij I j
r 2 I nt for each j = 1..n.

Proof. See Appendix.

We are now ready to prove the soundness and completeness of the meta-interpreter

extended to deal with joined intervals.

Theorem 4. (Soundness): Let P be a program expression and let V * be the meta-

program. For any object level atomic formula A and any ground interval I , the following

statement holds:

demo(P , A, I ) 2 T x
V * =Þ 9H : (A, H ) 2 F *

P
x ^ I ÍH.

Proof.

demo(P , A, I ) 2 T x
V *

=Þ fde®nition of T x
V * g

9p : demo(P , A, I ) 2 TV * (T
p
V * )

ÜÞ fde®nition of TV * g
9B ody : (demo(P , A, I ) ¬B ody ) 2 ground (V *) ^ B ody ÍT

p
V *

We have two cases corresponding to clauses (9) and (16):

(a) B ody = clause(P , A ¬G, K ), demo(P , G, J ), I v K u J ;

(b) B ody = demo(P , A, K ), demo(P , A, J ), I = K t J

(a) 9K , J : (demo(P , A, I ) ¬clause(P , (A ¬B1 , . . . , Bn ), K ), demo(P , (B1 , . . . , Bn ), J ),

I v K u J ) 2 ground (V *) ^ fclause(P , (A ¬B1, . . . , Bn ), K ),

demo(P , (B1 , . . . , Bn), J )g ÍT
p
V * ^ I ÍK ´J

=Þ fLemma 5g
9I 1

1 , . . . , I 1
i1 , . . . , I n

1 , . . . , I n
in , q : fdemo(P , Bj , I j

r ) j j = 1..n, r = 1..ij g ÍT
q
V ^

J Í j = 1,i1 I 1
j ´. . . ´ j = 1,in I n

j ^ r= 1,ij I j
r 2 I nt for each j = 1..n ^

clause(P , (A ¬B1 , . . . , Bn ), K ) 2 T
p
V * ^ I ÍK ´J

=Þ fStatement (14) of Theorem 1g
9H 1

1 , . . . , H 1
i1 , . . . , H n

1 , . . . , H n
in :

f (Bj , H j
r ) j j = 1..n, r = 1..ij g ÍF x

P ^ I 1
1 ÍH 1

1 , . . . , I n
in ÍH n

in
^

J Í j = 1,i1 I 1
j ´. . . ´ j = 1,in I n

j ^ r= 1,ij I j
r 2 I nt for each j = 1..n ^

clause(P , (A ¬B1 , . . . , Bn ), K ) 2 T
p
V * ^ I ÍK ´J

=Þ f r= 1,ij I j
r Í r= 1,ij H j

r and r= 1,ij H j
r 2 I nt for each j 2 f1, . . . , ng

by Proposition 3 and de®nition of F *
P g

9H 1
1 , . . . , H 1

i1 , . . . , H n
1 , . . . , H n

in : f (Bj , r= 1,ij H j
r ) j j = 1..ng ÍF *

P (F x
P ) ^

J Í j = 1,i1 H 1
j ´. . . ´

j = 1,in H n
j ^ r= 1,ij H j

r 2 I nt for each j = 1..n ^
clause(P , (A ¬B1 , . . . , Bn ), K ) 2 T

p
V * ^ I ÍK ´J

=Þ fCorollary 1 and K ´
j = 1,n s= 1,ij

H j
s
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is not empty since I ÍK ´J and I Ð [g
9H : (A, H ) 2 F *

P (F *
P (F x

P )) ^ K ´
j = 1,n s= 1,ij

H j
s ÍH ^

J Í j = 1,i1 H 1
j ´. . . ´

j = 1,in H n
j ^ I ÍK ´J

=Þ f I ÍK ´J , Statement (iii) of Remark 1 and F *
P

x is a ®xpoint of F *
P g

9H : (A, H ) 2 F *
P

x ^ I ÍH

(b) 9K , J : (demo(P , A, I ) ¬demo(P , A, K ), demo(P , A, J ), I = K t J ) 2
ground (V *) ^ fdemo(P , A, K ), demo(P , A, J )g ÍT

p
V * ^ I = K ÄJ ^ I 2 I nt

=Þ fLemma 5g
9I1, . . . , In , I 1 , . . . , I m, q1, q2 : fdemo(P , A, I1 ), . . . , demo(P , A, In)g ÍT

q1

V ^
K ÍI1 Ä. . . ÄIn ^ (I1 Ä. . . ÄIn ) 2 I nt ^
fdemo(P , A, I 1), . . . , demo(P , A, I m)g ÍT

q2

V ^ J Í(I 1 Ä. . . ÄI m) ^
(I 1 Ä. . . ÄI m) 2 I nt ^ I = K ÄJ ^ I 2 I nt

=Þ fq = maxfq1, q2 g , monotonicity of TV and Statement (14) of

Theorem 1g
9H1 , . . . , Hn , H 1 , . . . , H m : f (A, H1 ), . . . , (A, Hn ), (A, H 1), . . . , (A, H m)g ÍF x

P ^
I1 ÍH1 , . . . , I m ÍH m ^ K Í(I1 Ä. . . ÄIn) ^ J Í(I 1 Ä. . . ÄI m) ^
(I1 Ä. . . ÄIn ) 2 I nt ^ (I 1 Ä. . . ÄI m) 2 I nt ^ I = K ÄJ ^ I 2 I nt

=Þ fH = (H1 Ä. . . ÄHn ) Ä(H 1 Ä. . . ÄH m), and H 2 I nt by Proposition 3,

Statement (iii) of Remark 1, de®nition of F *
P and F *

P
x

is a ®xpoint of F *
P g

9H : (A, H ) 2 F *
P

x ^ I ÍH e

Theorem 5. (Completeness): Let P be a program expression and let V * be the

metaprogram. For any object level atomic formula A and any ground interval I , the

following statement holds:

(A, I ) 2 F *
P

x =Þ demo(P , A, I ) 2 T x
V *

Proof.

(A, I ) 2 F *
P

x

ÜÞ fde®nition of F *
P

x g
9h : (A, I ) 2 F *

P
h

ÜÞ fde®nition of F *
P g

9I1, . . . , In : f (A, I1 ), . . . , (A, In )g ÍF h
P ^ I = j = 1,n Ij ^ I 2 I nt

=Þ fStatement (15) of Theorem 2g
fdemo(P , A, I1 ), . . . , demo(P , A, In)g ÍT x

V ^ I = i= 1,n Ij ^ I 2 I nt

=Þ fStatement (iv) of Remark 1g
fdemo(P , A, I1 ), . . . , demo(P , A, In)g ÍT x

V * ^ I = i= 1,n Ij ^ I 2 I nt

=Þ fclause (16) used n 1 times in a suitable order and T x
V * is a

®xpoint of TV * g
demo(P , A, I ) 2 T x

V * e

8. Related work

Interest in research concerning the handling of temporal information has been

growing steadily over the past two decades. On the one hand, a lot of eŒort

has been spent in developing extensions of logical languages capable to deal with

time (see, for example, Orgun and Ma (1994)). On the other hand, in the ®eld
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of databases, many approaches have been proposed to extend the existing data

models, such as the relational, the object-oriented and the deductive models, to cope

with temporal data (see, e.g. the book by Tansel et al. (1993)). It is clear that a

close connection exists between these two trends in research, since temporal logic

languages can provide solid theoretical foundations for temporal databases, and

powerful knowledge representation and query languages for them (Gabbay and

McBrien 1991, Chomicki 1994, Orgun 1996).

Two main logical formalisms have been developed for time: temporal logic with

modal temporal operators and classical logic with temporal variables. In the follow-

ing we brie¯y review some approaches in the literature which seem to be relevant

to our work, presenting them according to the above classi®cation.

8.1. Temporal and modal languages

Several languages based on temporal logic have been de®ned. The languages such

as Chronolog (Rolston 1986, Orgun and Wadge 1988), Templog (Abadi and Manna

1989), Temporal Datalog (Orgun 1996), Temporal Prolog (Gabbay 1987), Temporal

Prolog (Sakuragawa 1987), MTL (Brzoska 1995) directly extend logic programming

with temporal operators. Most of them use temporal versions of resolution-based

proof procedures and they diŒer in which temporal constructs they allow, and,

therefore, in which classes of problems they can naturally express. We discuss only

Templog as an exam ple of this class of languages. For a survey of temporal and

modal logic programming consider the overview by Orgun and Ma (1994) and for

recent trends see Fisher and Owens (1995).

Templog extends classical Horn logic programming languages, such as Prolog

(Sterling and Shapiro 1986), to include programs with the following temporal con-

structs: Eu (u is true at the next instant of time), *u (u is always true (from now

on)), Vu (u is eventually true). Programs are sets of temporal clauses subdivided into

permanent and initial clauses with particular constraints on the use of the temporal

operators in the head and the body of clauses. This approach is point based and

it is di�cult to ask queries such as In which period was Frank a researcher? , that is

to extract infomation about duration of actions, intervals in which some facts hold,

as we can easily do. This language, as most of the others mentioned, establishes

relations among instants of time and for this reason, a disadvantage is that they

cannot naturally represent explicit references to time. They are designed to handle

relative timing information rather than a quantitative timing one. Templog is based

on temporal SLD resolution, a sound and complete proof procedure, that is rea-

sonably e�cient. Moreover two equivalent formulations of Templog’s declarative

semantics are given: in terms of a least ®xpoint and in terms of a minimal Herbrand

model (Baudinet 1989).

The language MTL, a temporal logic programming language with metric and

past operators, presented in Brzoska (1995) subsumes Templog. It allows not only

qualitative, but also quantitative temporal information, such as *[c1 ,c2 ] A, meaning

that A always holds between c1 and c2 . An interesting feature of this approach, that

we would like to explore even in our framework, is the possibility of translating MTL

into an instance of the CLP-scheme (JaŒar and M aher 1994) over a suitable algebra,

where (due to the particular form of the involved constraints) the MTL-resolution

can be expressed as a quite e�cient restriction of CLP-resolution.

Concerning the other mentioned approaches, Gabbay’s Temporal Prolog has an



68 P. Mancarella et al.

operational semantics that does not immediately fully de®ne an interpreter, because

it does not account for the linearity of time and a proof search strategy is not

speci®ed. Sakuragawa’s Temporal Prolog programs are compiled into Prolog. In our

approach we provide a meta-interpreter whose axioms de®ne a new SLD procedure,

capable of handling program expressions and time intervals, in terms of the basic

SLD of logic program ming. Then we give a declarative semantics by using a least

®xpoint approach and we prove the equivalence of the meta-logical and least ®xpoint

semantics.

8.2. Classical logic languages with temporal variables

In this category of languages we recall Datalog1S (Chomicki and Imielinski 1988,

Baudinet et al. 1993), Temporal Prolog (Hrycej 1993), Temporal Annotated Con-

straint Logic Programming (Fr Èuhwirth 1996), Constraint Databases (Kanellakis et

al. 1995, Koubarakis 1994) and Event Calculus (Kowalski and Sergot 1986, Sripada

1988).

Datalog1S is a language for temporal deductive databases (Baudinet et al. 1993),

which allows for the implicit representation of the extension of the temporal at-

tributes. The main advantage they oŒer is the gain in expressiveness: they make

the representation of in®nite extensions possible and they often allow for a more

compact representation of ®nite extensions. Datalog1S is an extension of Datalog

such that all the predicates are extended with an extra parameter for time. The

time parameter is constructed using a unary function symbol denoting the successor

function.

Datalog1S shares with our language a ®xpoint semantics, a discrete time domain,

but diŒers substantially in the fact that it is point-wise (while our approach is oriented

to intervals) and ¯at (no mechanism for structuring and combining programs is

given). A distinctive feature of Datalog1S is the possibility of representing periodic

data , yet not allowed in our approach. In the next session we will discuss a possible

way to overcome this limitation.

Temporal Prolog (Hrycej 1993) extends Prolog with two additional clause types:

temporal references, denoted by P in T , which are used to assert that a certain

statement P holds exactly during a time interval T , and temporal constraints, which

axiomatize Allen’s relationships between time intervals. This approach has many

features in common with ours: it attaches time intervals to clauses, it uses an

interval-based algebra and it gives a meta-level representation of the knowledge

via the predicate Holds. The main diŒerences reside in the fact that Temporal

Prolog does not have any modularization mechanism and it deals with negation and

disjunctive formulae that we do not provide. Again we ®nd extremely interesting the

way the language has been designed in order to have an e�cient implementation

based on a temporal constraint solver.

While in Temporal Prolog time is associated with clauses, in Temporal Con-

straint Annotated Logic Programming (TACLP), presented in Fr Èuhwirth (1996),

each formula can be labelled (annotated) by temporal information, for instance

owns car (X ) th [T1 , T 2] ¬buys car (X ) at T1 ^ sells car (X ) at T 2

means that if a person X buys a car at T 1 and she/ he sells it at T2 then she/ he owns

the car in the time period from T1 to T 2. Formulae can have three possible temporal

annotations: A at T (A holds at time point T ), A th [T1 , T 2] (A holds throughout

the time period from T 1 to T 2) and A in [T1 , T 2] (A holds at some point(s) in
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[T 1, T 2]Ð inde®nite temporal information). Such approach supports both qualitative

and quantitative temporal reasoning about de®nite and inde®nite information with

time points and time periods. TACLP shares with our approach many features,

such as the presence of a meta-interpreter (although implemented in constraint logic

programming), the structure of time, the time period order relation (subinterval)

and the join operation on intervals de®ned only on overlapping intervals (in order

to always have convex sets). This makes us con®dent that the treatment of inde®nite

information, yet not availab le for our approach, should not be di�cult to be

imported. The diŒerences pointed out for Hrycej’s Temporal Prolog can be repeated

even for Temporal annotated logic.

Constraint Databases (Kanellakis et al. 1995) generalize the classical relational

data model by introducing generalized tuples: quanti®er-free formulas in an appro-

priate constraint theory. The key intuition of this approach is that the generalization

of a tuple is a conjunction of constraints. By varying the underlying logical theory

one can model diŒerent problems. In particular, to represent temporal information

the dense linear order inequality theory is often used as logical theory for constraints.

In this theory, for instance, the instant k is modelled by the generalized tuple on

variable X , X = k and an interval [k1 , k2 ] is modelled as X &k1 ^ X %k2 . We

refer to Koubarakis (1994) for a detailed presentation of a signi®cant application of

constraint databases to the handling of time. Koubarakis succeeds in modelling not

only in®nite temporal information but also inde®nite information.

Finally we mention Event Calculus (Kowalski and Sergot 1986, Kowalski 1992).

Event Calculus is a treatment of time, based on the notion of events, in ®rst-order

classical logic augmented with negation as failure. It is closely related to Allen’s

interval temporal logic (Allen 1984). For example, let E1 be an event in which Bob

gives the Book to John and E2 be an event in which John gives Mary the Book.

Assume that E2 occurs after E1. Given these event descriptions, we can deduce that

there is a period started by the event E1 in which John possesses the book and that

there is a period terminated by E1 in which Bob possesses the book. This situation

is represented pictorially

Bob has the Book John has the Book
< ° >

E1
John has the Book Mary has the Book

< ° >
E 2

A series of axioms for deducing the existence of time periods and the Start and

End of each time period are given by using the Holds predicate.

Holds(before(e r)) if Terminates(e r)

means that relationship r holds in the time period before(e r) that denotes a time

period terminated by the event e. Holds(after(e r)) is de®ned in an analogous way.

Event Calculus provides a natural treatment of valid time in databases, and it was

extended in Sripada (1988, 1991) to include the concept of transaction time.

Therefore Event Calculus exploits the deductive power of logic and the compu-

tational power of logic programming as in our approach, but the modelling of time

is diŒerent: events are the granularity of time chosen in Event Calculus, whereas we

use time intervals.
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8.3. Final discussion

The main diŒerence of our approach from the cited ones, is the context: we are

interested in modelling time in a multi-theory framework. Our knowledge (even

temporal) is distributed in diŒerent theories and we provide operators to query and

compose such theories. Almost all the logical languages discussed so far lack these

features.

Exceptions are Temporal Datalog (Orgun 1996) and constraint databases (Kanel-

lakis et al. 1995). The ®rst one introduces a notion of module. However, this

mechanism seems not to be used as a knowledge representation tool but to de®ne

new non-standard algebraic operators. In fact, to query a temporal Datalog pro-

gram , Orgun proposes a `point-wise extension’ of the relational algebra upon the

set of natural numbers, called TRA-algebra. Temporal modules can be used to feed

back temporal relations, created during the evaluation of TRA expressions, to the

deduction part for further manipulation, having access in this way to the use of

recursion, arithmetic predicates and temporal operators.

Indeed, our context is closer to the paradigm of constraint databases. Actually,

from a deductive database perspective, each logic program of our framework can

be viewed as an enriched relational database where relations are represented partly

intensionally and partly extensionally. The meta-level operators can then be viewed

as a means of constructing views by combining multiple databases in various ways.

In reality, if in our theories we had only ground facts, our union Ä and intersection
´ operators would correspond to the union Ä and intersection ´ on generalized

relations of constraint databases with the dense linear order inequality theory. The

database operations we are not able to model are those requiring negation, such as

the diŒerence between relations.

But our theories are not just ground facts. We can exploit the deductive power of

rules and we have also the possibility of having a dynamic set of rules. In fact, we

assign valid time also to clauses and this allows us to change the set of clauses used

to solve a goal according to their temporal validity, as we have seen in section 5.

9. Future work

As mentioned in the introduction, we intend to investigate diŒerent representations

of time, other than the one based on time intervals attached to program clauses (e.g.

using time points and relations among them, attaching time information to atoms

instead of rules and so on).

In this perspective, we are studying the possibility of replacing time intervals with

time points and constraints over them. It seems possible to adapt our approach for a

constraint language with composition operators. An interval [ t1, t2 ] can be modelled

as the constraint t1 % t % t2 and the temporal conditions in the meta-interpreter

can be transformed into equivalent constraints on time points. This representation

should allow us to express periodic data. For instance, suppose that a pub is open

every day from 6 pm to 12 pm. This information can be modelled by constraining

the fact open pub by t1 &18 + 24 *n ^ t2 %24 + 24 * n, where t1 and t2 are the

starting and ending point of the validity interval, respectively. In such a way, by

varying the natural number n, we obtain the opening hours of the pub. Moreover,

we would like to exploit the technology of constraint logic programming in order to

get better implementations than the ones provided by meta-interpreters.
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A critical point is the handling of negation. From a practical viewpoint it is

su�cient to add the clause

demo(exp, not x, I) ¬not demo(exp,x,I)

to the meta-interpreter in order to embody the negation by default of logic

programming into our language, as in Fr Èuhwirth (1996) and Hrycej (1993). However,

from a theoretical viewpoint, the interactions between negation by default and

program composition operators is still to be fully understood. Some results on the

semantics interactions between operators and negation by default are presented

in Brogi et al. (1997), where, however, the handling of time is not considered. One

problem related to time is that the set of points in which a negation holds is generally

non-convex. In fact even if A holds in a single convex interval I , the negation of A

holds both in the set of points before and after I . In our approach we can derive

only convex sets. However, we can represent that a fact A (or a rule) holds in a

set of disjunctive and non-meeting intervals f I1, . . . , In g by n clauses, each having as

validity interval one Ii, i.e. A ¬*Ii for i = 1 . . . n. Such a representation requires

further investigation because it could be source of incorrect answers as shown in

B Èohlen and Marti (1994).

Another research direction is about designing more powerful operators. We have

two categories in mind: hierarchical operators, i.e. operators that de®ne hierarchical

relations among programs, and constraint operators, that allow one to use a program

as a set of constraints acting over other programs. An operator of this kind, operating

over programs without time decorations, has been presented in Aquilino et al. (1997).

Finally, as far as applications are concerned, we are tackling the problem of

integrating our logic database technology with systems for managing geographic

information. In Aquilino et al. (1996) a solution to the problem is proposed, but,

again, without any capability of handling time, while the ability of performing

spatio-temporal reasoning on geographic data is nowadays considered a must for

many real applications.
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Appendix

Proof of Lem m a 2 The proof is by structural induction on P . We distinguish the

following cases.

(P is a plain program P ).

clause(P , (A ¬B1 , . . . , Bn ), I0) 2 T x
V ^ f (B1 , I1 ), . . . , (Bn, In)g ÍI ^

j = 0,n Ij not empty

=Þ f P is a plain program and de®nition of TV and clause (13)g
9K : A ¬B1, . . . , Bn*K 2 ground (P ) ^ I0 ÍK ^
f (B1, I1 ), . . . , (Bn, In)g ÍI ^ j = 0,n Ij not empty
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=Þ f de®nition of F P and H = K ´
j = 1,n Ij g

9H : (A, H ) 2 F P (I ) ^ j = 0,n Ij ÍH

(P = Q ÄR ).

clause(Q ÄR , (A ¬B1 , . . . , Bn), I0 ) 2 T x
V ^ f (B1 , I1), . . . , (Bn, In )g ÍI ^

j = 0,n Ij not empty

=Þ fde®nition of TV and clauses (10) and (11) g
((9J1 : clause(Q , (A ¬B1, . . . , Bn ), J1 ) 2 T x

V ^
I0 ÍJ1 ^ f (B1 , I1), . . . , (Bn, In )g ÍI ) _ (9J2 : clause(R , (A ¬B1, . . . , Bn), J2 ) 2
T x

V ^ I0 ÍJ2 ^ f (B1 , I1 ), . . . , (Bn, In)g ÍI )) ^ j = 0,n Ij not empty

=Þ f inductive hypothesisg
(9H1 : (A, H1 ) 2 F Q (I ) ^ (J1 ´

j = 1,n Ij ) ÍH1 ^ I0 ÍJ1 ) _
(9H2 : (A, H2 ) 2 F R (I ) ^ (J2 ´

j = 1,n Ij ) ÍH2 ^ I0 ÍJ2 )

=Þ f (I0 ÍJ1) _ (I0 ÍJ2 )g
(9H1 : (A, H1 ) 2 F Q (I ) ^ j = 0,n Ij ÍH1 ) _
(9H2 : (A, H2 ) 2 F R (I ) ^ j = 0,n Ij ÍH2 )

=Þ f set-theoretic union g
9H : ((A, H ) 2 F Q (I ) _ (A, H ) 2 F R (I )) ^ j = 0,n Ij ÍH

=Þ fde®nition of F Q ÄR g
9H : (A, H ) 2 F Q ÄR (I ) ^ j = 0,n Ij ÍH

(P = Q Ŕ ). As in the previous case by using clause (12) of the meta-interpreter. e

Proof of Lem m a 3: The proof is by structural induction on P . We distinguish the

following cases.

(P is a plain program P ).

(A, I ) 2 F P (I )

ÜÞ fde®nition of F P g
9(B1 , I1), . . . , (Bn, In ), I0 : A ¬B1 , . . . , Bn*I0 2 ground (P ) ^

f (B1 , I1), . . . , (Bn, In )g ÍI ^ I = j = 0,n Ij ^ I Ð [
=Þ fde®nition of meta-level representationg

9(B1 , I1), . . . , (Bn, In ), I0 : clause(P , (A ¬B1, . . . , Bn), I0 ) ¬I0 v I0 2
ground (V ) ^ f (B1, I1 ), . . . , (Bn, In)g ÍI ^ I = j = 0,n Ij

=Þ fde®nition and monotonicity of TV and I0 v I0 by de®nitiong
9(B1 , I1), . . . , (Bn, In ), I0 : clause(P , (A ¬B1, . . . , Bn), I0 ) 2 T x

V ^
f (B1 , I1), . . . , (Bn, In )g ÍI ^ I = j = 0,n Ij

(P = Q ÄR ).

(A, I ) 2 F Q ÄR (I )

ÜÞ fde®nition of F Q ÄR g
(A, I ) 2 F Q (I ) ÄF R (I )

ÜÞ fproperty of set-theoretic uniong
(A, I ) 2 F Q (I ) _ (A, I ) 2 F R (I )

=Þ f inductive hypothesisg
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(9(B 1
1 , I 1

1 ), . . . , (B 1
n , I 1

n ), I 1
0 : clause(Q , (A ¬B 1

1 , . . . , B 1
n ), I 1

0 ) 2 T x
V ^

f (B 1
1 , I 1

1 ), . . . , (B 1
n , I 1

n )g ÍI ^ I = j = 0,n I 1
j ) _

(9(B 2
1 , I 2

1 ), . . . , (B 2
m, I 2

m), I 2
0 : clause(R , (A ¬B 2

1 , . . . , B 2
m), I 2

0 ) 2 T x
V ^

f (B 2
1 , I 2

1 ), . . . , (B 2
m, I 2

m)g ÍI ^ I = j = 0,m I 2
j )

=Þ fclauses (10) and (11) and I 1
0 v I 1

0 and I 2
0 v I 2

0 by de®nition and T x
V

is a ®xpoint of TV g
(9(B 1

1 , I 1
1 ), . . . , (B 1

n , I 1
n ), I 1

0 : clause(Q ÄR , (A ¬B 1
1 , . . . , B 1

n ), I 1
0 ) 2 T x

V ^
f (B 1

1 , I 1
1 ), . . . , (B 1

n , I 1
n )g ÍI ^ I = j = 0,n I 1

j ) _
(9(B 2

1 , I 2
1 ), . . . , (B 2

m, I 2
m) I 2

0 : clause(Q ÄR , (A ¬B 2
1 , . . . , B 2

m), I 2
0 ) 2 T x

V ^
f (B 2

1 , I 2
1 ), . . . , (B 2

m, I 2
m)g ÍI ^ I = j = 0,m I 2

j )

which clearly implies the thesis.

(P = Q ´R ). As in the previous case by using clause (12) of the meta-interpreter. e

Proof of Lem m a 5 The proof is by induction on h.

(Base case). Trivial since T 0
V * = [.

(Inductive case). Assume that

demo(P , (B1, . . . , Bn), I ) 2 T h
V * =Þ 9I 1

1 , . . . , I 1
i1 , . . . , I n

1 , . . . , I n
in , q :

fdemo(P , Bj , I j
r ) j j = 1..n, r = 1..ij g ÍT

q
V ^

I Í j = 1,i1 I 1
j ´. . . ´ j = 1,in I n

j ^
r= 1,ij

I j
r 2 I nt for each j = 1..n

Then:

demo(P , (B1 , . . . , Bn), I ) 2 T h+ 1
V *

ÜÞ fde®nition of T a
V * g

demo(P , (B1 , . . . , Bn), I ) 2 TV * (T h
V * )

ÜÞ fde®nition of TV * g
9 B ody : (demo(P , (B1 , . . . , Bn), I ) ¬B ody ) 2 ground(V *) ^ B ody ÍT h

V * .

We have three cases corresponding to the clauses (8), (9) and (16):

(a) n > 1 and Body = demo(P , (B1, . . . , Br ), K ),

demo(P , (Br+ 1 , . . . , Bn ), J ), I v K u J ,

where 1 %r < n;

(b) n = 1 and Body = clause(P , B ¬(A1, . . . , Ar ), K ),

demo(P , (A1 , . . . , Ar ), J ), I v K u J ;

(c) B ody = demo(P , (B1, . . . , Bn), K ), demo(P , (B1, . . . , Bn), J ), I = K t J .

(a) 9K , J : (demo(P , (B1, . . . , Bn ), I ) ¬demo(P , (B1 , . . . , Br ), K ),

demo(P , (Br+ 1 , . . . , Bn ), J ), I v K u J ) 2 ground(V *) ^
f demo(P , (B1, . . . , Br ), K ), demo(P , (Br+ 1, . . . , Bn ), J )g ÍT h

V * ^ I ÍK ´J

=Þ f inductive hypothesisg
9I 1

1 , . . . , I 1
i1 , . . . , I r

1 , . . . , I r
ir , . . . , I n

1 , . . . , I n
in , q1, q2 : fdemo(P , Bj , I j

s ) j

j = 1..r, s = 1..ij g ÍT
q1

V ^ K Í j = 1,i1 I 1
j ´. . . ´

j = 1,ir I r
j ^

s= 1,ij I j
s 2 I nt for each j = 1..r ^

f demo(P , Bj , I j
s ) j j = r + 1..n, s = 1..ij g ÍT

q2

V
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^ J Í j = 1,ir+ 1
I r+ 1

j ´. . . ´
j = 1,in I n

j ^
s= 1,ij I j

s 2 I nt for each j = r + 1..n ^ I ÍK ´J

=Þ f I ÍK ´J , associativity of ,́ q = maxfq1, q2 g and monotonicity of TV g
9I 1

1 , . . . , I 1
i1 , . . . , I n

1 , . . . , I n
in , q : fdemo(P , Bj , I j

s ) j j = 1..n, s = 1..ij g ÍT
q
V ^

I Í j = 1,i1 I 1
j ´. . . ´ j = 1,in I n

j ^ s= 1,ij I j
s 2 I nt for each j = 1..n

(b) 9K , J : (demo(P , B , I ) ¬(clause(P , B ¬(A1 , . . . , Ar ), K ),

demo(P , (A1 , . . . , Ar ), J ), I v K u J ) 2 ground (V *) ^
f clause(P , B ¬(A1 , . . . , Ar ), K ), demo(P , (A1, . . . , Ar ), J )g ÍT h

V * ^ I ÍK ´J

=Þ f inductive hypothesisg
9I 1

1 , . . . , I 1
i1 , . . . , I r

1 , . . . , I r
ir , q : fdemo(P , Aj , I j

s ) j j = 1..r, s = 1..ij g ÍT
q
V ^

J Í j = 1,i1
I 1

j ´. . . ´
j = 1,ir

I r
j ^ s= 1,ij

I j
s 2 I nt for each j = 1..r ^

I ÍK ´J ^ clause(P , B ¬(A1 , . . . , Ar ), K ) 2 T h
V *

=Þ fapply r 1 times clause (8) and let m = q + r 1g
9I 1

1 , . . . , I 1
i1 , . . . , I r

1 , . . . , I r
ir , m :

f demo(P , (A1 , . . . , Ar ),u j = 1,r I
j
tj

) j j = 1..r, tj = 1..ij , j = 1,r I
j
tj

not emptyg Í
T m

V ^ J Í j = 1,i1 I 1
j ´. . . ´

j = 1,ir I r
j ^ s= 1,ij I j

s 2 I nt

for each j = 1..r ^ I ÍK ´J ^ clause(P , B ¬(A1 , . . . , Ar ), K ) 2 T h
V *

=Þ fdistributivity of ´ over Ä and j = 1,i1 I 1
j ´. . . ´

j = 1,ir I r
j 2 I ntg

9I 1
1 , . . . , I 1

i1 , . . . , I r
1 , . . . , I r

ir , m :

f demo(P , (A1 , . . . , Ar ),u j = 1,r I
j
tj

) j j = 1..r, tj = 1..ij , j = 1,r I
j
tj

not emptyg
ÍT m

V ^ J Í f j = 1,r I
j
tj

j j = 1..r, tj = 1..ij , j = 1,r I
j
tj

not emptyg ^
f j = 1,r I

j
tj

j j = 1..r, tj = 1..ij , j = 1,r I
j
tj

not emptyg 2 I nt ^
I ÍK ´J ^ clause(P , B ¬(A1 , . . . , Ar ), K ) 2 T h

V *

=Þ fLemma 4 and monotonicity of TV g
9I 1

1 , . . . , I 1
i1 , . . . , I r

1 , . . . , I r
ir , m :

f demo(P , (A1 , . . . , Ar ),u j = 1,r I
j
tj

) j j = 1..r, tj = 1..ij , j = 1,r I
j
tj

not emptyg
ÍT m

V ^ J Í f j = 1,r I
j
tj

j j = 1 . . . r, tj = 1 . . . ij , j = 1,r I
j
tj

not emptyg ^
f j = 1,r I

j
tj

j j = 1..r, tj = 1..ij , j = 1,r I
j
tj

not emptyg 2 I nt ^
I ÍK ´J ^ clause(P , B ¬(A1 , . . . , Ar ), K ) 2 T m

V

=Þ fLet H1 , . . . , Hv be the elements of the set

fK ´( j = 1,r I
j
tj

) j j = 1 . . . r, tj = 1 . . . ij , K ´( j = 1,r I
j
tj

) not emptyg ,

I ÍK ´J , distributivity of ´ over Ä, K ´J 2 I nt, clause (9),

and q 0 = m + 1 g
9H1, . . . , Hv, q 0 : fdemo(P , B , Hj ) j j = 1..vg ÍT

q 0

V ^ I Í j = 1,v Hj ^
j = 1,v Hj 2 I nt

(c) 9K , J : (demo(P , (B1, . . . , Bn ), I ) ¬demo(P , (B1 , . . . , Bn ), K ),

demo(P , (B1 , . . . , Bn), J ), I = K t J ) 2 ground (V *) ^ fdemo(P , (B1 , . . . , Bn), K ),

demo(P , (B1 , . . . , Bn), J )g ÍT h
V * ^ I = K ÄJ ^ I 2 I nt

=Þ f inductive hypothesisg
9I 1

1 , . . . , I 1
i1 , . . . , I n

1 , . . . , I n
in , I

1

1 , . . . , I
1

i 0
1
, . . . , I

n

1, . . . , I
n

i 0
n
, q1 , q2 :
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f demo(P , Bj , I j
s ) j j = 1..n, s = 1..ij g ÍT

q1

V ^
K Í j = 1,i1

I 1
j ´. . . ´

j = 1,in
I n

j ^ s= 1,ij
I j

s 2 I nt

for each j = 1..n ^ fdemo(P , Bj , I
j

s ) j j = 1..n, s = 1..i 0
j g ÍT

q2

V ^
J Í j = 1,i 0

1
I

1

j ´. . . ´
j = 1,i 0

n
I

n

j ^ s= 1,i 0
j
I

j

s 2 I nt for each j = 1..n ^
I = K ÄJ ^ I 2 I nt

=Þ f I = K ÄJ and distributivity of Ä over ´ and I 2 I nt,

q = maxf q1 , q2g and monotonicity of TV g
9I 1

1 , . . . , I 1
i1 , . . . , I n

1 , . . . , I n
in , I

1

1 , . . . , I
1

i 0
1
, . . . , I

n

1, . . . , I
n

i 0
n
, q :

f demo(P , Bj , I j
s ) j j = 1..n, s = 1..ij g ÍT

q
V ^

f demo(P , Bj , I
j

s ) j j = 1..n, s = 1..i 0
j g ÍT

q
V ^

I Í j = 1,i1 I 1
j Ä

j = 1,i 0
1

I
1

j ´. . . ´
j = 1,in I n

j Ä
j = 1,i 0

n
I

n

j ^
I 2 I nt

=Þ fassociativity of Ä and s= 1,ij
I j

s Ä
s= 1,i 0

j
I

j

s is not empty,

for each j = 1..n, since I 2 I ntg
9I 1

1 , . . . , I 1
i1 , . . . , I n

1 , . . . , I n
in , I

1

1 , . . . , I
1

i 0
1
, . . . , I

n

1, . . . , I
n

i 0
n
, q :

f demo(P , Bj , I j
s ) j j = 1..n, s = 1..ij g ÍT

q
V ^

f demo(P , Bj , I
j

s ) j j = 1..n, s = 1..i 0
j g ÍT

q
V ^

I Í(I 1
1 Ä. . . ÄI 1

i1
ÄI

1

1 Ä. . . ÄI
1

i01
) ´. . . ´(I n

1 Ä. . . ÄI n
in

ÄI
n

1 Ä. . . ÄI
n

i0n ) e
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