120 research outputs found

    Quantum mechanics of Drude oscillators with full Coulomb interaction

    Get PDF

    Tensor factorizations of local second-order M{\o}ller Plesset theory

    Get PDF
    Efficient electronic structure methods can be built around efficient tensor representations of the wavefunction. Here we describe a general view of tensor factorization for the compact representation of electronic wavefunctions. We use these ideas to construct low-complexity representations of the doubles amplitudes in local second order M{\o}ller-Plesset perturbation theory. We introduce two approximations - the direct orbital specific virtual approximation and the full orbital specific virtual approximation. In these approximations, each occupied orbital is associated with a small set of correlating virtual orbitals. Conceptually, the representation lies between the projected atomic orbital representation in Pulay-Saeb{\o} local correlation theories and pair natural orbital correlation theories. We have tested the orbital specific virtual approximations on a variety of systems and properties including total energies, reaction energies, and potential energy curves. Compared to the Pulay-Saeb{\o} ansatz, we find that these approximations exhibit favourable accuracy and computational times, while yielding smooth potential energy curves

    Exact nonadditive kinetic potentials for embedded density functional theory

    Get PDF
    We describe an embedded density functional theory (DFT) protocol in which the nonadditive kinetic energy component of the embedding potential is treated exactly. At each iteration of the Kohn–Sham equations for constrained electron density, the Zhao–Morrison–Parr constrained search method for constructing Kohn–Sham orbitals is combined with the King-Handy expression for the exact kinetic potential. We use this formally exact embedding protocol to calculate ionization energies for a series of three- and four-electron atomic systems, and the results are compared to embedded DFT calculations that utilize the Thomas–Fermi (TF) and the Thomas–Fermi–von Weisacker approximations to the kinetic energy functional. These calculations illustrate the expected breakdown due to the TF approximation for the nonadditive kinetic potential, with errors of 30%–80% in the calculated ionization energies; by contrast, the exact protocol is found to be accurate and stable. To significantly improve the convergence of the new protocol, we introduce a density-based switching function to map between the exact nonadditive kinetic potential and the TF approximation in the region of the nuclear cusp, and we demonstrate that this approximation has little effect on the accuracy of the calculated ionization energies. Finally, we describe possible extensions of the exact protocol to perform accurate embedded DFT calculations in large systems with strongly overlapping subsystem densities

    Analytical Gradients for Projection-Based Wavefunction-in-DFT Embedding

    Get PDF
    Projection-based embedding provides a simple, robust, and accurate approach for describing a small part of a chemical system at the level of a correlated wavefunction method while the remainder of the system is described at the level of density functional theory. Here, we present the derivation, implementation, and numerical demonstration of analytical nuclear gradients for projection-based wavefunction-in-density functional theory (WF-in-DFT) embedding. The gradients are formulated in the Lagrangian framework to enforce orthogonality, localization, and Brillouin constraints on the molecular orbitals. An important aspect of the gradient theory is that WF contributions to the total WF-in-DFT gradient can be simply evaluated using existing WF gradient implementations without modification. Another simplifying aspect is that Kohn-Sham (KS) DFT contributions to the projection-based embedding gradient do not require knowledge of the WF calculation beyond the relaxed WF density. Projection-based WF-in-DFT embedding gradients are thus easily generalized to any combination of WF and KS-DFT methods. We provide numerical demonstration of the method for several applications, including calculation of a minimum energy pathway for a hydride transfer in a cobalt-based molecular catalyst using the nudged-elastic-band method at the CCSD-in-DFT level of theory, which reveals large differences from the transition state geometry predicted using DFT.Comment: 15 pages, 4 figure

    Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes

    Full text link
    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and we develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential (OEP) calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexaaquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.Comment: 11 pages, 5 figures, 2 table

    Even-handed subsystem selection in projection-based embedding

    Get PDF
    Projection-based embedding offers a simple framework for embedding correlated wavefunction methods in density functional theory. Partitioning between the correlated wavefunction and density functional subsystems is performed in the space of localized molecular orbitals. However, during a large geometry change—such as a chemical reaction—the nature of these localized molecular orbitals, as well as their partitioning into the two subsystems, can change dramatically. This can lead to unphysical cusps and even discontinuities in the potential energy surface. In this work, we present an even-handed framework for localized orbital partitioning that ensures consistent subsystems across a set of molecular geometries. We illustrate this problem and the even-handed solution with a simple example of an S_N2 reaction. Applications to a nitrogen umbrella flip in a cobalt-based CO_2 reduction catalyst and to the binding of CO to Cu clusters are presented. In both cases, we find that even-handed partitioning enables chemically accurate embedding with modestly sized embedded regions for systems in which previous partitioning strategies are problematic

    Molecular second-quantized Hamiltonian:Electron correlation and non-adiabatic coupling treated on an equal footing

    Get PDF
    We introduce a new theoretical and computational framework for treating molecular quantum mechanics without the Born–Oppenheimer approximation. The molecular wavefunction is represented in a tensor-product space of electronic and vibrational basis functions, with electronic basis chosen to reproduce the mean-field electronic structure at all geometries. We show how to transform the Hamiltonian to a fully second-quantized form with creation/annihilation operators for electronic and vibrational quantum particles, paving the way for polynomial-scaling approximations to the tensor-product space formalism. In addition, we make a proof-of-principle application of the new Ansatz to the vibronic spectrum of C2
    • …
    corecore