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Drude oscillators provide a harmonic description of charge fluctuations, and are widely studied as a
model system and for ab initio calculations. In the dipole approximation the Hamiltonian describing
the interaction of Drudes is quadratic, so can be diagonalized exactly, but the energy diverges at
short range. Here we consider the quantum mechanics of Drude oscillators interacting through
the full Coulombic Hamiltonian, for which the interaction energy does not have this defect. This
protypical model for interactions between matter includes electrostatics, induction and dispersion.
Potential energy curves for rare-gas dimers are very closely matched by Drude correlation energies
plus a single exponential function. The exact and accurate results presented here help to delineate
between basic properties of the physical model, and effects that arise from the dipole approximation.

I. INTRODUCTION

The quantum Drude oscillator1 provides a minimal
model of electrical response properties of matter, and
consists of a oppositely charged particles connected
by a spring. Drude oscillators have risen to promi-
nence through the development of polarizable force-
fields2–7, as the basis of the Tkatchenko-Scheffler dis-
persion functional8–13, and in models that describe at-
tachment of electrons to neutral matter14–17. Their ap-
plication to the interaction between nanoscale systems
with varying dimensionality has revealed collective ef-
fects that qualitatively determine the interaction, and
that are completely omitted in simpler, pairwise disper-
sion models18. One study19 has gone beyond the dipole
limit using both norm-conserving diffusion Monte Carlo
and diagrammatic techniques. However, due to use of
the multipole expansion, the latter also requires a short-
range screening function.

The interaction between well-separated Drude oscilla-
tors is often modelled in the dipole approximation, and
in this case the Hamiltonian is quadratic in the positions
and momenta of the Drude particles, and is diagonal-
ized by a normal-mode transformation1,20,21. Perturba-
tion theory leads to the well known long-range −C6/R

6

form22, and the divergence at short-range is typically re-
moved through a damping correction10,23–27. Use of such
damping function, however, introduces a few more pa-
rameters in the theory.

Here we study the properties of the basic quantum
mechanical model the Drude-oscillator dimer with full
Coulombic interaction. As a result, the interaction en-
ergies become finite for all inter-Drude distances nullify-
ing the need of any damping function. The results pre-
sented here, therefore, can be treated as references to
judge the merit of any future approximations. By pro-
viding accurate benchmark data we, thus, aim to help
validation of more tractable approaches, and to separate
effects that are intertwined in damping schemes. We
are also interested in this basic system as a prelude to
working on embedding schemes that combine electronic
and Drude degrees of freedom. Although Drude oscilla-

tors are spherical, and we here apply them to spherical
systems, extension to anisotropic systems is straightfor-
ward by distribution of Drude-oscillator sites, typically
on atomic centres.

II. THEORY

We will consider a three-dimensional Drude oscillator
with charges ±q, mass µ and frequency ω, described by
a Hamiltonian

h = − h̄
2

2µ
∇2 +

µω2

2
r2 . (1)

The quantum states are labelled by the number of quanta
in each Cartesian direction |nxnynz〉 ≡ |n〉, and have
energies h̄ω(n+ 3/2) where n = nx + ny + nz.

The system of two Drude oscillators is described by
a Hamiltonian H = H0 + V , where H0 = h1 + h2 and
V is the interaction. In the dipole approximation the
interaction is given by

Vdip =
q2

4πε0R5

{
R2 r1 ·r2 − 3 (r1 ·R) (r2 ·R)

}
, (2)

where r1 and r2 are the Drude coordinates, and R is
the vector connecting the fixed positive charges of the
two oscillators. Note that the quadratic form of dipole
approximated potential allows an exact solution of the
model. However, within this approximation the oscilla-
tors always retains its spherical shapes and do not pro-
vide any induction interactions. However, a realistic
model of molecular electron density needs to be polar-
izable. The exact interaction is given by

V =
q2

4πε0{
1

R
+

1

|R− r1 + r2|
− 1

|R− r1|
− 1

|R + r2|

}
,

(3)

where each term describes the Coulombic interaction be-
tween charges associated with each oscillator. The first
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two repulsive terms mimic internuclear and interelec-
tronic interactions while the last two attractive terms
represent electron-nucleus attractions. The presence of
both repulsive as well as attractive interactions makes
the model progressively polarizable with decreasing sep-
aration between them.

With energies expressed in units h̄ω and lengths in√
h̄/(µω), the system is fully defined by the two pa-

rameters that specify the relative strength and relative
length-scale of the interaction term. For weak interac-
tion (the small q limit) the phenomenology is dominated
by the harmonic oscillator portion of the Hamiltonian.
For strong interaction (large q) the harmonic constraint
is relatively weak, and the system behaves rather like a
harmonically coupled pair of hydrogen atoms, with the
negative particle of oscillator 1 interacting with the pos-
itive particle of oscillator 2, and vice versa.

The zeroth-order Hamiltonian is diagonal in the prod-
uct basis |n1n2〉, with elements

〈n1n2|H0|n1n2〉 = (3 + n1 + n2)h̄ω , (4)

and in particular the zeroth-order energy is E0 = 3h̄ω.
The interaction matrix elements over V have the form

of electrostatic interactions between Hermite-Gaussian
charge distributions and point charges, so the required
integrals have exactly the same form as the electron-
repulsion integrals and the nuclear-attraction integrals
routinely evaluated in molecular quantum chemistry28;
we evaluate them following the same methods.

The reference approach is exact diagonalization (or full
configuration interaction — FCI) truncated to at most
m quanta at either site. We also explore perturbation
theory (PT) to arbitrary order29 and the random-phase
approximation (RPA)30,31. RPA is of interest because it
provides the exact ground state for H0 + Vdip.

III. RESULTS

We perform calculations on pairs of Drude oscillators
parameterized to reproduce the dipolar polarizability and
C6 and C8 dispersion coefficients for helium, neon and
argon atoms by Jones et al.32 — the parameters can be
found in Table I of that work.

A. Mean field effects

The expectation value

〈00|H|00〉 = E0 + E1 , (5)

where E1 = 〈00|V |00〉, is the simplest type of mean-field
energy. In discussing total energies E we use the term
“binding energy” to denote E−E0, and “correlation en-
ergy” for Ecorr = E − E0 − E1. (In the dipole approx-
imation these quantities are identical.) Using ζ = mω,
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FIG. 1: Mean-field contributions to the interaction of two
Drude oscillators, parameterized for argon dimer, with
m = 5. The curves show E1, the purely electrostatic

interaction of ground-state oscillators; Emf − E0 − E1, the
induction contribution to the interaction; and Emf − E0 the

total mean-field binding energy.

the first-order energy is

E1 =
q2

4πε0

{
1

R
+

erf(
√
ζ/2R)

R
− 2

erf(
√
ζR)

R

}
. (6)

In the dipole approximation, dimer states with an exci-
tation on just one site, such as |000, 100〉 make no con-
tribution to the ground-state wavefunction. With the
full interaction, though, they do contribute, and describe
induction effects33. By diagonalizing the configuration-
interaction-singles (CIS) block of the Hamiltonian, we
can capture just this induction effect; the CIS ground-
state is exactly the same as would result from a
self-consistent-field calculation with a mean-field (i.e.
product-type) wavefunction, and we label the energy
from this calculation Emf.

The mean-field contributions to binding are shown in
Figure 1. The interactions are strong, but very short-
ranged. Although the key phenomena are captured, the
functional form and range is not correct: in the Drude
model these follow from the Gaussian charge distribution,
which is obviously a very poor model for the electron
density of the atom; and moreover, the lengthscale is de-
termined to fit response properties, rather than the size
of the atom. These attractive interactions are less rele-
vant in the true argon dimer, where exchange-repulsion
effects dominate at such distances.

B. Full configuration interaction

We compute FCI correlation energies with the num-
ber of quanta at a single site truncated at m, so the
Hilbert space that is diagonalized has dimension d2 where
d =

(
m+3
3

)
. As is often observed34,35 we find that the FCI

correlation energy converges as 1/d, as illustrated in Fig-
ure 2. Extrapolation allows us to estimate the correlation
energy of this system to be −0.902 mEh. The compa-
rable m = 1 calculation yields only −0.508 mEh, and
in the dipole approximation −C6/R

6 = −0.571 mEh is
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FIG. 2: Convergence of FCI correlation energies as a
function of m for argon dimer with internuclear separation
R = 7 bohr, with (red) and without (black) extrapolation

assuming 1/d convergence.
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FIG. 3: Variation of binding curves for two Drude
oscillators for representative values of q and for ω = µ = 1,

computed using the 1/d extrapolation with m = 4, 5.

obtained. Around the optimum interatomic separation,
−C6/R

6 is larger than the interaction energy obtained
with the full Hamiltonian and m = 1; but it is smaller
than the full interaction, and this may have implications
for the design of damping functions.

As noted above, the system in reduced units is charac-
terized by the parameters q and R, and we show highly
accurate results for the binding energy of the dimer as a
function of these variables in Figure 3.

C. Perturbation theory and RPA

An obvious approach to the description of this system
is perturbation theory. Dispersion appears first at second
order (as does induction, discussed above). Although
we have efficient implementations of second- and third-
order perturbation theory (PT2 and PT3), we here use
the FCI program, following the approach of Ref. 29, to
investigate the convergence at higher orders. The pth-
order wavefunction is computed in terms of lower-order
contributions as

|ψp〉 = −(H0 − E0)−1
p∑

k=1

(δk1V − Ek)|ψp−k〉 (7)
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FIG. 4: Convergence of the magnitudes of perturbative
energy contributions Ep for argon dimer at two interatomic

separations, R = 7 bohr (black) and R = 3.5 bohr (red),
computed with m = 5.

with each successive energy given by Ep+1 = 〈ψ0|V |ψp〉.
The convergence of the perturbation series for argon

dimer is shown in Figure 4 for two interatomic separa-
tions; in both cases convergence is rapid and smooth.
The slight surprise here is that the perturbation the-
ory is smoothly convergent even when the atoms are ex-
tremely close; this is in contrast to the Møller-Plesset
series, which often diverges36–38.

RPA supplies the exact ground-state energy in the
dipole approximation (because H0 + Vdip is harmonic),
but is approximate for the fully interacting Hamiltonian;
here we assess its accuracy. The RPA correlation energy
was evaluated using

Ecorr
RPA =

1

2

∑
n

(ωRPA
n − ωCIS

n ) (8)

where |ωRPA
n |2 are the eigenvalues of the RPA matrix

M = (A + B)(A − B), where Ann′ = 〈n0|H − E0|0n′〉
and Bnn′ = 〈00|V |nn′〉, and where ωCIS

n are the CIS
eigenvalues.
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FIG. 5: Errors in leading-order perturbation theory and
RPA (relative to FCI) for the argon dimer and with m = 3.

RPA is shown with and without a singles correction,
computed as the CIS induction contribution.

The errors in energies for argon dimer computed using
RPA and leading orders of PT are plotted in Figure 5,
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FIG. 6: Comparison of Drude and ab initio binding energy curves for He2, Ne2, NeAr and Ar2. The thick gray lines provide
the reference ab initio CCSD(T) potentials (see text). Red, solid lines are the sum of the ab initio HF energy and the Drude

correlation energy computed with exact diagonalization and m = 5. The dashed lines show the two-parameter fit
ae−bR + Ecorr(R), providing almost perfect agreement with the ab initio binding curves.

computed relative to FCI. Rapid convergence of the per-
turbation series is confirmed. Cleary RPA performs less
well, despite being exact for dipole-interaction Hamilto-
nian. At short range this is mostly due to omission of
single excitations — in the dipole approximation these
vanish, but with the full Hamiltonian they do not. They
would be properly accounted for by basing the RPA cal-
culation on a relaxed mean-field reference state, rather
than on the zeroth-order wavefunction used here. But
even the simpler expedient of adding the relaxation terms
from CIS clearly improves matters in the short range.

What is more surprising is that the convergence to
the correct long-range form is slower for RPA that even
for PT2, although it does eventually reach the correct
asymptote. Although RPA produces the correct C6 co-
efficient, higher-order multipole contributions (C8, C10,
etc) appear not to be as accurate as in PTn. While this is
clearly consistent with the observation that RPA is exact
in the dipole approximation, it was surprising to us.

D. Comparison against ab initio results

Finally we assess the accuracy of the Drude
model of correlation effects in the pairwise interac-
tion of rare-gas atoms. Our reference data are ob-
tained using CCSD(T)/aug-cc-pVQZ39 with counter-
poise corrections40, an approach that produces rare-gas
dimer binding energies sufficiently accurate for our pur-
poses.

Correlation energies were computed using FCI with

m = 5. We then investigated two models for the re-
maining interaction effects: first using ab initio Hartree-
Fock (HF) theory (with the aug-cc-pVQZ basis set), and
second by fitting a single exponential. The results are
plotted in Figure 6 for He2, Ne2, NeAr and Ar2. It
can be seen that reasonable agreement is found between
EHF +Ecorr and the reference data, despite the complete
absence of dimer-specific parameters.

A key source of error in these calculations is the failure
to treat any fermionic exchange effects beyond the HF
level. Broadly such effects are well approximated by an
exponential with a length-scale commensurate with the
size of the atom; the dominant exchange-repulsion and
induction effects of HF theory can be expected to follow
a similar form. We therefore fit ae−bR + Ecorr(R) with
respect to the parameters a, b; the quality of this fit can
be seen in Figure 6.

IV. DISCUSSION

Systems of Drude oscillators coupled together by
dipole interactions are described by a quadratic Hamilto-
nian that can be diagonalized exactly by a normal-mode
transformation. This can be viewed as an approxima-
tion to a system with the full Coulomb interaction of
charges. The recent rise in interest in Drude oscillators
has motivated us to study the properties of this basic
quantum system without recourse to the dipole approxi-
mation. Several striking differences arise.

First, the Hamiltonian is not exactly diagonalizable,
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and all bosonic number states contribute to the wave-
function. Even so, convergence of truncated calculations
appears to be systematic, with errors decaying as 1/d.
Second, the correlation energy of Drude oscillator dimers
is a defined and finite quantity at all separations.

Unlike in the dipole-approximation, there are mean-
field effects beyond zeroth-order, closely corresponding
to orbital relaxation effects in HF theory, and leading to
a description of induction. The length-scale of this effect
is governed by the radial extent of the monomer ground
state,

√
h̄/(µω). Although we have not explored this

here, the Drude parameters could be fitted to reproduce
this length-scale correctly.

We note that the natural perturbation expansion,
with the non-interacting system forming the zeroth-order
Hamiltonian, converges rapidly and smoothly. RPA,
which is exact in the dipole approximation, correctly re-
turns the very long-range form of the potential, but is less
accurate at short range. Correcting for single-excitation
effects, RPA has an accuracy between that of PT2 and
PT3 at short range.

V. SUMMARY

Drude oscillators offer a minimal and incredibly use-
ful model for quantum mechanical charge fluctuations.

Here we investigate the exact nature of the interaction
between pairs of Drude oscillators, and show that with-
out the dipole approximation, they produce an accurate
model of correlation effects at all separations of rare-gas
atoms. The model also provides a qualitatively accurate
description of induction interaction which is completely
absent in dipole approximation. It appears that a more
accurate parametrization scheme may also able to de-
scibe induction effects quantitatively. We find that RPA
does not provide a very accurate estimate of the binding
energy, despite being exact in the dipole approximation.
However, RPA with a self-consistently optimized ground
state might perform better. The surprisingly rapid con-
vergence of perturbation theory is another key result. In
summary, this study sets out benchmark results against
which other estimating the accuracy of other, more ap-
proximate theories can be judged.
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Martyna, Phys. Rev. B 79, 144119 (2009).

20 W. L. Bade and J. G. Kirkwood, J. Chem. Phys. 27, 1284
(1957).

21 W. L. Bade, J. Chem. Phys. 28, 282 (1958).
22 The situation for the exact interaction in the dipole ap-

proximation is actually a little more complicated, because
at very small distances the ground state disappears alto-
gether, when the normal-mode transformation produces
one oscillator mode with negative force constant.

23 C. Steffen, K. Thomas, U. Huniar, A. Hellweg, O. Rubner,
and A. Schroer, J. Comput. Chem. 31, 2967 (2010).

24 W. Liu, A. Tkatchenko, and M. Scheffler, Acc. Chem. Res.
47, 3369 (2014).

25 L. Kronik and A. Tkatchenko, Acc. Chem. Res. 47, 3208
(2014).

26 A. M. Reilly and A. Tkatchenko, Chem. Sci. 6, 3289 (2015).
27 N. Ferri, R. A. DiStasio, A. Ambrosetti, R. Car, and

A. Tkatchenko, Phys. Rev. Lett. 114, 176802 (2015).
28 S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986).



6

29 P. J. Knowles, K. Somasundram, N. C. Handy, and K. Hi-
rao, Chem. Phys. Lett. 113, 8 (1985).

30 X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci.
47, 7447 (2012).

31 A. Tkatchenko, A. Ambrosetti, and R. A. DiStasio, J.
Chem. Phys. 138, 074106 (2013).

32 A. P. Jones, J. Crain, V. P. Sokhan, T. W. Whitfield, and
G. J. Martyna, Phys. Rev. B 87, 144103 (2013).

33 A. Stone, The Theory of Intermolecular Forces, Inter-
national Series of Monographs on Chemistry (Clarendon
Press, 1997).

34 A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper,
H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett.
286, 243 (1998).
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