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We investigate the extent to which the dynamics of excitons in the light-harvesting complex LH2
of purple bacteria can be described using a Markovian approximation. To analyse the degree of
non-Markovianity in these systems, we introduce a measure based on fitting Lindblad dynamics,
as well as employing a recently introduced trace-distance measure. We apply these measures to a
chromophore-dimer model of exciton dynamics and use the hierarchical equation-of-motion method
to take into account the broad, low-frequency phonon bath. With a smooth phonon bath, small amounts
of non-Markovianity are present according to the trace-distance measure, but the dynamics is poorly
described by a Lindblad master equation unless the excitonic dimer coupling strength is modified.
Inclusion of underdamped, high-frequency modes leads to significant deviations from Markovian
evolution in both measures. In particular, we find that modes that are nearly resonant with gaps in the
excitonic spectrum produce dynamics that deviate most strongly from the Lindblad approximation,
despite the trace distance measuring larger amounts of non-Markovianity for higher frequency modes.
Overall we find that the detailed structure in the high-frequency region of the spectral density has a
significant impact on the nature of the dynamics of excitons. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4978568]

I. INTRODUCTION

Photosynthesis provides the energy for nearly all life on
Earth. The conversion of light energy into biologically useful
chemical energy is a complex process performed by a variety
of different organisms. Energy is captured in the form of pho-
tons and transported to a reaction center, where it is converted
into useful chemical energy. The capture and transport process,
generically known as light harvesting, is of great interest due
to its near unit quantum efficiency1,2 and because of recent
suggestions of long-lasting quantum coherent effects based
on two-dimensional (2D) femtosecond spectroscopic experi-
ments.3–8 Understanding how light harvesting achieves such
high efficiency, and the role of quantum coherence in this effi-
ciency, has been the goal of much theoretical and experimental
work in the past few years, with heavy focus on the interaction
of the excited states with their surrounding environment.

Within the body of theoretical work, many interesting
and general insights into the potential role of the environ-
ment have been gained through the use of the Lindblad master
equation.9–21 Ideas such as noise-assisted transport,9,10,12–14,16

quantum locking, and momentum rejuvenation14 have been
used to suggest how interactions with the environment can
help speed up energy transport in networks of chromophores.

a)n.linden@bristol.ac.uk
b)fred.manby@bristol.ac.uk

However, it is still not certain whether these phenomena play
a role in the real biological context, where the assumptions
inherent in the master-equation approach may not apply. It has
been shown, for physically realistic values of the environment
coupling, that Lindblad and the related Redfield equations fail
to capture the correct exciton-transfer rates.22

The question we address here is whether or not a priori
Lindblad equations, parameterised in any manner, are capa-
ble of reproducing the dynamics of exciton transfer. Previous
research into this question has resulted in differing conclu-
sions.23–26 In particular, within a dimer extracted from the
Fenna-Matthews-Olson (FMO) complex, small amounts of
non-Markovianity were observed for an overdamped Brown-
ian spectral density;23 however, in calculations using the quasi-
adiabatic path-integral approach (QUAPI) on the full FMO
complex with realistic spectral densities, no non-Markovianity
was found.24 Here we look at the degree of non-Markovianity
in a dimer parameterised to reflect the B850 ring of light
harvesting complex two.

The role of underdamped intra-molecular modes has
been the focus of much attention recently, and in particu-
lar modes that are resonant with energy gaps between exci-
tonic eigenstates.11,27–33 In some pigment-protein complexes,
these modes show significant coupling to the excitons.34–37

This has led to theoretical studies that provide evidence for
the important role they may play in assisting energy trans-
port and in producing the long-lived coherences seen in 2D
spectroscopy experiments.27–33 The phenomenon whereby
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these underdamped molecular vibrations induce long-lived
coherences and drive transitions between excitonic eigenstates
has been demonstrated using a semi-classical treatment of
the intra-molecular mode,28 which it was claimed demon-
strates that the fundamental mechanism is not dependent upon
non-Markovian dynamics. However, in Ref. 32 it is argued
that, in models of dimers relevant for photosynthetic systems,
efficient transport can show, and benefit from, non-classical
effects, so there may be a significant role for non-Markovian
effects. The extent to which non-Markovianity is increased
through coupling to resonant modes is investigated in this
paper.

Much progress has been made in developing metrics for
quantifying non-Markovianity in the dynamics of open quan-
tum systems. For a thorough review of these measures, we
refer the reader to Ref. 38. Broadly speaking these measures
can be categorised into those that look at properties of the
dynamical maps that induce the time evolution of the sys-
tem;39–43 monotonicity of distance measures between two
time-evolved trajectories of the system;44–47 and properties
quantifying the correlations between the system of interest
and an ancillary system.40,48–50 Other measures are based
upon the sign of decay rates of a Lindblad master equation
in its canonical form51 and properties of the affine transform
induced by the dynamical map.52 Some of these measures are
complete in the sense that they capture any deviation away
from the Markovian regime, whilst others capture only par-
ticular aspects of non-Markovianity. The complete measures
either require information on the dynamical map or the use
of an ancillary system which incurs extra, often impractical,
computational cost. To tackle this issue we have developed a
measure of non-Markovianity based upon finding the closest
fitting Lindblad master equation. This measure has the bene-
fits of being bounded (between 0 and 1), and being related in
a direct and straightforward way to the feasibility of using the
Lindblad approximation.

This paper is structured as follows: In Section II we dis-
cuss the measures we will use to quantify the degree of non-
Markovianity, introducing our measure based upon complete
parameterisation and fitting of a Lindblad operator. In Secs. III,
IV, and V, we apply these measures to chromophore dimers
parameterised to model those of the light-harvesting complex
LH2. In Section III we look at the effect of a broad phonon
bath on the degree of non-Markovianity, which we model
with the hierarchical equations-of-motion (HEOM) method.
We show that despite small amounts of non-Markovianity,
the dynamics is well-captured by a Lindblad approach, pro-
vided the site coupling in the excitonic Hamiltonian is a free
parameter. In Section IV we treat the same dimer system cou-
pled to high frequency intra-molecular modes. We present
our calculations of the couplings to these modes which were
computed using density functional theory calculations of a
bacteriochlorophyll-a (BChl-a) molecule. We investigate how
the degree of non-Markovianity varies with the number of dis-
crete modes as well as the frequency of the discrete modes.
We find that the degree of non-Markovianity increases with
the number of discrete modes for both measures of non-
Markovianity. We also find that, according to the Lindblad fit-
ting measure, vibrational modes resonant with the gap between

the excitonic eigenstates induce the most non-Markovianity.
Finally, in Section V we combine both models and investigate
more realistic structured spectral densities using HEOM to
model the phonon bath and include a discrete intra-molecular
mode. Here we find that the discrete vibrational modes con-
tribute significantly to the degree of non-Markovianity, calling
into question the use of Lindblad evolution to model exciton
dynamics.

II. THEORY
A. Measuring non-Markovianity

Before exploring measures of non-Markovianity, it is
worth considering a definition for Markovian dynamics intro-
duced in Ref. 38. Let ρ(t) be the density matrix describing the
dynamical evolution of the state of some quantum system. The
dynamical evolution from a state ρ(t1) to a state ρ(t2) at times
t2 ≥ t1 can be described by the dynamical map that induces
the evolution, Et2,t1 ρ(t1) = ρ(t2), where E is a completely posi-
tive and trace-preserving (CPTP) map and does not depend on
the state upon which it acts. A family of such linear quantum
maps Et2,t1 induces Markovian dynamics if for all t2 ≥ t1 ≥ t0
it fulfills the composition law

Et2,t0 = Et2,t1Et1,t0 . (1)

Breuer et al.47 introduced a convenient measure for non-
Markovianity based on the trace-distance metric. The trace
distance quantifies the difference between two states, ρ1 and
ρ2, and is defined as

D(ρ1, ρ2) =
1
2

Tr |ρ1 − ρ2 | . (2)

It satisfies 0 ≤ D ≤ 1, and D = 0 if and only if ρ1 = ρ2, and D
= 1 if and only if ρ1 is orthogonal to ρ2 (defined as Trρ†1ρ2 = 0).
This metric has the property that it is a contraction under a
CPTP map E,

1
2

Tr |Eρ1 − Eρ2 | ≤
1
2

Tr |ρ1 − ρ2 | . (3)

From our definition of Markovian dynamics above, a Marko-
vian evolution is induced by a CPTP map and due to the
composition law in Eq. (1), any possible division of that evo-
lution into smaller time steps is also a CPTP map. Thus the
trace distance between two initial states undergoing Markovian
dynamics will monotonically decrease and any increase in the
trace distance indicates non-Markovian effects. This mono-
tonic decrease can be intuitively understood as arising from
the entirely dissipative nature of the bath in the Markovian
regime. Both initial states continuously lose information to the
environment as they tend towards the same steady state. Only
when there is a back-flow of information from the environ-
ment can this process be temporarily reversed and the distance
between the states be increased.

We would like to construct a measure for this property
and quantify an answer to the question: given some dynami-
cal process that takes ρ(0) → ρ(t), how non-Markovian is it?
From the above property, Breuer, Laine, and Piilo (BLP)47 con-
cluded that the degree of non-Markovianity can be quantified
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by calculating the extent to which the trace distance increases
between two density matrices starting at different initial states,

NBLP(ρ1, ρ2) =
∫

dD(ρ1(t), ρ2(t))
dt

θ

(
dD(ρ1(t), ρ2(t))

dt

)
dt,

(4)

where θ, the Heaviside function, ensures that the derivative
only contributes to the integral when it is positive. This quan-
tification is dependent upon the pair of initial states chosen.
To remove this dependence, a search over all possible pairs of
initial states can be performed and the maximum defined to
represent the degree of non-Markovianity for the system,

NBLP = max
ρ1,ρ2

NBLP(ρ1, ρ2). (5)

The computational difficulty of performing such a maximisa-
tion can be reduced by taking into account recently proved
conditions for initial-state pairs that maximise NBLP,53 which
state that the maximum occurs for initial states that are
orthogonal and lie on the boundary of the state space (which
is equivalent to having a zero eigenvalue). An alternative
approach is to consider typical initial states of the system.
For the case of light harvesting, the true nature of the ini-
tial state is still debated;26 however, for simplicity it is often
assumed that the exciton is initially localised at a single chro-
mophore. Thus, as well as looking at NBLP, we also inves-
tigate the typical amount of non-Markovianity, based on the
fully localised initial states for a dimer system. We note that
in such cases the degree of non-Markovianity may be an
underestimate.

We will refer to this measure as the BLP measure of
non-Markovianity and, in order to distinguish it from other
uses of the trace distance in this paper, we will refer to the
trace distance calculation associated with it as the BLP trace
distance.

Although very useful, the disadvantages of the BLP
measure are two-fold. First, there are some forms of non-
Markovianity that the BLP measure will not capture.38,51,54

In particular, we write a state ρ of dimension d in the form

ρ =
I
d

+
∑

i

αi Fi, (6)

where αi are the elements of a real d2
� 1 dimensional vector

α known as the Bloch vector and F i are a set of orthogonal
traceless hermitian operators (e.g., the Pauli matrices for d = 2).
The action of any dynamical map on ρ can now be written in
the form of an affine transform of the Bloch vector,

α̇(t) = Mα(0) + t. (7)

It may be shown that the trace distance between two evolving
states is independent of the vector t.54 For this reason the BLP
metric is sometimes called a witness rather than a measure of
non-Markovianity.38 Second, since the measure is not bounded
above, it is not clear for what values of the measure it can be
concluded that Lindblad-type master equations are no longer a
good approximation. It is this second point that motivates the
introduction of a Lindblad fitting scheme.

Any quantum mapL inducing a Markovian time evolution
can be written in Gorini-Kossakowski-Sudarshan-Lindblad
form,38

dρ
dt
= LL(ρ) =

i
~

[ρ, H] + L(ρ), (8)

where the second term

L(ρ) =
1
2

∑
jk

hjk

(
2Lj ρL†k − ρL†k Lj − L†k Lj ρ

)
(9)

describes the dissipative effect induced upon the dynamics of
the system by a Markovian bath, and where the Lj form a
complete set of orthogonal traceless operators and h is a posi-
tive matrix. For a two-dimensional system, one can represent
the density matrix ρ in its Bloch vector form (see Eq. (6)),
ρ = I/2 +

∑3
i=1 αiLi. The action of a Lindblad operator can

now be written as the affine transformation in Eq. (7).
It can be shown that for a two-dimensional system that M

is a real symmetric matrix55 and can therefore always be diag-
onalised. It is convenient to parameterise the eigenvalues of M
with three real parameters qi such that the eigenvalues are �(q2

+ q3)/2, �(q1 + q3)/2, and �(q1 + q2)/2. The conditions on the
parameters can be derived by ensuring that the corresponding
matrix h in Eq. (9) is always positive.56,57 These result in the
conditions,

ti, qi ∈ R, (10a)

qi ≥ 0, (10b)

t2
1

q2q3
+

t2
2

q1q3
+

t2
3

q1q2
≤ 1. (10c)

We then explore the complete set of Lindblad dissipators by
varying qi, ti, and the 3 × 3 orthogonal matrices (parame-
terised by three real parameters β1, β2, β3 corresponding to
angles) that diagonalise a general 3 × 3 symmetric matrix M.
It should be noted that this parameterisation characterises fully
only those Lindblad evolutions with constant rates. This simple
parameterisation, consisting of nine real parameters, makes it
possible to perform an optimisation to find the Lindblad master
equation that best fits a given quantum evolution.

Given some quantum evolution of a two-state system ρ(t),
we can find the closest-fitting Lindblad evolution ρL(t) by
minimising the function,

Q =
1
T

∫ T

0
dt

1
2

Tr |ρL(t) − ρ(t)| (11)

with respect to the parameters ti, qi, and βi and subject to
the constraints in Eq. (10). In Eq. (11) we have employed the
trace distance to quantify the difference between the exact
evolution and the Lindblad evolution at each time, t. The
integral quantifies the total difference during the trajectory,
resulting in Q being the mean trace distance between the two
trajectories. This measure acts as a complementary measure
of non-Markovianity to the BLP measure presented earlier. It
has the advantages that it is bounded between 0 and 1 and that
it directly quantifies the extent to which the non-Markovianity
present in the system renders the Lindblad master equation
ineffective at capturing the dynamics. Examination of the prop-
erties of the best-fitting Lindblad also provides some insight
into the effects that non-Markovianity has on the dynamics of
the system.
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As for the BLP measure, we can show that the largest
values of non-Markovianity from this fitting measure will be
for pure initial states. Suppose our initial state is a mixed state,

ρ(0) =
∑

i

piσi, (12)

where σi are some set of pure-state density matrices and pi the
associated probabilities. Let the dynamical maps that induce
a HEOM and Lindblad evolution from time 0 to t be given by
EH

t and EL
t , respectively. The trace distance between these two

trajectories at time t is then given by

D *.
,

∑
i

piEH
t σi,

∑
j

pjEL
t σj

+/
-

. (13)

By the convexity property of the trace distance, we can show
that this is always less than or equal to the weighted sum of
the trace distance between the time evolved pure state density
matrices,

D *.
,

∑
i

piEH
t σi,

∑
j

pjEL
t σj

+/
-
≤

∑
i

piD
(
EH

t σi, EL
t σi

)
. (14)

Thus, the total trace distance over the evolution of the mixed
state must always be less than or equal to the trace distance
over the evolution of one or more of its pure-state components.

In order to find the Lindblad equation that best captures the
underlying processes of a physical system, it is not sufficient
to minimise the function Q for a single initial state as the
resulting Lindblad may not capture the correct dynamics for
other initial states. Thus we compute the best fitting Lindblad,
averaged over initial states,

〈Q〉 =
1
M

M∑
i=1

1
T

∫ T

0
dt

1
2

Tr |ρL(t) − ρi(t)|. (15)

However, in practice we found that whether one fits to many
initial states or just to one initial state, the resulting Q value
is almost identical in both cases. In practice we used 105 pure
initial states selected to uniformly cover the surface of the
Bloch sphere.

B. System bath model

To model the dynamics of excitons interacting with an
environment, we adopt the standard system-bath Hamiltonian

H = HS + HB + HI , (16)

where the system Hamiltonian HS describes the dynamics of
the exciton, HB describes the bath or environment, and H I

describes the interaction between system and bath. The sys-
tem is a chromophore dimer described by the commonly used
Frenkel exciton Hamiltonian,

HS =

2∑
i=1

ε ia
†

i ai +
∑
i,j

Vija
†

i aj, (17)

where a(†)
i are annihilation (creation) operators of an exci-

tation at bacteriochlorophyll (BChl) i, ε i is the energy of a
single excitation at site i, and V ij is the electronic coupling
between BChls i and j. Here we restrict ourselves to the

one-exciton manifold, an approximation that is well-justified
for certain photosynthetic organisms, such as purple bacte-
ria, where the low intensity light conditions of their natu-
ral environments are such that the time scale between the
arrival of photons is large enough that the probability of two
excitations encountering each other during transport is very
low.58

The environment is modelled as a collection of quantum
harmonic oscillators, with each BChl interacting with an inde-
pendent set of bath modes of identical frequency and coupling
strength. These vibrational modes are used to represent the
influence of discrete intramolecular vibrational modes as well
as the effect of solvent modes. This bath Hamiltonian is given
by

HB =

2∑
i=1

∑
s

~ωsb
†

s,ibs,i, (18)

where b(†)
s,i are the annihilation (creation) operators of quanta

for bath mode s of frequency ωs that is coupled to BChl site i.
The interaction Hamiltonian describes the coupling of

the bath modes to the diagonal elements of the exciton
Hamiltonian,

HI =

2∑
i=1

∑
s

gsa
†

i ai(b
†

s,i + bs,i) . (19)

Here gs is the coupling strength associated with bath mode s
and is related to the reorganisation energy λs = g2

s/~ωs and
Huang-Rhys factor Λs = g2

s/(~ωs)2. The operator b†s,i + bs,i is
proportional to the displacement operator of bath mode s of
BChl i. Note that the summation over the index s applies in the
case of discrete vibrational modes, but in the continuous case
should be thought of as an integral.

The coupling parameters can be captured in a single func-
tion of frequency known as the spectral density J(ω), whose
magnitude determines the coupling strength,

J(ω) =
∑

s

Λsδ(ω − ωs). (20)

This is particularly useful when the number of bath modes is
infinite, for example, when modelling interaction with a sol-
vent environment or a damped vibrational mode. For clarity
we have adopted the notation for spectral densities as defined
in Ref. 59. From now on in this paper, when referring to the
spectral density, we will be referring to the antisymmetric
component of the Fourie-Laplace transform of the energy gap
correlation function C ′′(ω), which is related to the definition
above by

C ′′(ω) = ω2J(ω). (21)

III. BROAD SPECTRAL DENSITY

The interaction of a BChl molecule with a protein and sol-
vent environment can be modelled by coupling the system to a
broad continuous spectral density. Here we explore the effect
this interaction has on the degree of non-Markovianity in the
dynamics of an exciton. To model this interaction, we use the
HEOM method,60 which permits an essentially exact treat-
ment of quantum dynamics at finite temperature. The main
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disadvantage is that few spectral densities are computation-
ally tractable with the method: here we employ the Brownian
oscillator spectral density61

C ′′(ω) =
2Eλγω

~π(γ2 + ω2)
, (22)

where Eλ is the total reorganisation energy, and γ is a damping
constant, inversely related to the bath correlation time scale by
γ = 1/τc. This function determines the coupling parameter gs

in the interaction Hamiltonian (Eq. (19)) through

C ′′(ω) =
∑

s

g2
s

~2
δ(ω − ωs) . (23)

To obtain physically realistic values for these parameters, we
compared this functional form to the spectral density fitted
to experiments on the B777 monomer pigment of the LH1
complex by Renger and Marcus.62 The B777 complex con-
sists of a single BChl-a molecule bound to an α-helix protein,
similar to the chromophore environment in the B850 ring of
LH2. This consists of 18 BChl-a molecules closely arranged
in a ring structure, each bound to α-helices.63 Due to the
similarity of the environment, it is reasonable to assume that
the same shape function will apply well to the B850 ring of
LH2, and this is what we have done. We configured Eλ to
equal the reorganisation energy of the B777 spectral den-
sity and fitted γ such that the peak frequencies matched.
This gives values of Eλ = 89.85 cm−1(1.69 × 1013 Hz) and
γ = 23.36 ps−1.

The experimentally fitted and Brownian spectral densi-
ties are shown in Figure 1: the imperfect agreement between
them has been well-documented.59 It has been shown for this
spectral density that decreasing γ (increasing the correlation
time τc) results in greater amounts of non-Markovianity.23 The
effect of this parameter change on the shape of the spectral den-
sity is decreased coupling at higher frequencies and a sharper
peak in the lower frequency regime. Similarly, here we see
that the B777 spectral density has decreased coupling in the
high frequency regime and a sharper peak in the lower fre-
quency regime. Thus, by analogy, we suspect that the B777
spectral density would exhibit greater non-Markovianity than
the Brownian spectral density used here.

Using the HEOM approach60 as implemented in the Phi
software package,64 we modelled the effect of the Brown-
ian spectral density on a symmetric dimer parameterised to

FIG. 1. Comparison of the B777 spectral density of Renger and Marcus62

and the Brownian spectral density used here to model the B850 ring of LH2.

reflect a dimer of the LH2 complex of purple bacteria. The
site energies for the BChls were taken to be equal, and the
coupling strength between them was set to V = V12 = V21

= 245 cm−1 (4.61 × 1013 Hz). (Later on in Sections IV and V
we also look at asymmetric dimers where the site energies dif-
fer by ε1 − ε2 = 200 cm−1 (3.77 × 1013 Hz).) The initial state
of the bath was taken to be a thermal initial state at temperature
T = 288 K.

Here we look at the dynamics of this dimer and assess the
degree of non-Markovianity using the Lindblad fitting mea-
sure. The fitting of the Lindblad was taken by minimising 〈Q〉
over 105 initial states chosen from a Lebedev grid65 over a
hemi-sphere of the Bloch sphere. Figure 2 (left column) shows
the result for the initial state ρ(0) = |0〉 〈0| which is a typical
result. It shows the dynamics of the site population ρ11 for the
HEOM calculation and the best fitting Lindblad. The upper
row is for the case of fixed coupling strength V. The lower
row is for the case where we allow this coupling strength to be
optimised, along with the parameters that define the Lindblad
operator. For the fixed Hamiltonian, we see significant differ-
ences between the two evolutions. For the Lindblad case, the
frequency of oscillations in the site population is determined
entirely by the system Hamiltonian. For the HEOM calcu-
lation however, the frequency of oscillations in the dynam-
ics is determined by the system Hamiltonian as well as the
shape of the spectral density and the strength of interaction
with it.

The interaction with the Brownian spectral density, as
parameterised here, produces faster oscillations in the dynam-
ics compared to the isolated system, effectively increasing
the coupling strength between the two chromophores. This
is shown in the lower row of Figure 2 where an increase of the
coupling strength of around 10% from V = 245 cm−1 (4.61
× 1013 Hz) to V = 270 cm−1 (4.61× 1013 Hz) greatly improves
the fit. The site populations show very similar values beyond
200 fs for this fit. Up to this point there is a small deviation
between the two, indicating non-Markovian effects. In partic-
ular, the HEOM evolution shows slightly smaller-amplitude
oscillations than the Lindblad evolution, corresponding to a
smaller transfer of exciton density between the sites in this
region. This result is seen clearly in the lower right panel of
Figure 2, which shows the trace distance between the two evo-
lutions. After around 200 fs, the density matrices are nearly
identical between the two calculations, and even in the earlier
dynamics the deviation is small.

The full range of Q values for all initial states used to
find the optimal Lindblad is shown in Figure 3. The left figure
is for the case of a fitted coupling strength V and the right
figure shows the fixed result. Here again we can clearly see
the large difference in values between the cases where the
coupling strength is and is not optimised. In particular we see
a broader spread for the fixed Hamiltonian case. This arises
because for some initial states there are minimal oscillations in
the dynamics, for example, the |+〉 〈+| or |−〉 〈−| states. When
the oscillations in the dynamics are of very low amplitude,
it does not matter if the frequencies are mismatched; hence,
these initial states fit well. This illustrates the need to allow the
coupling strength to be a free parameter if we are to interpret
the fitting values as a measure of non-Markovianity. Somewhat
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FIG. 2. Left: Site population of a sin-
gle site of an LH2 dimer for a HEOM
calculation at T = 288 K (blue) and the
best fitting Lindblad evolution (red) for
fixed Hamiltonian (upper) and fitted
Hamiltonian (lower). Right: trace dis-
tance between the Lindblad and HEOM
density matrices over time. The non-
Markovianity measure (Eq. (15)), up to
the point of equilibrium ≈650 fs, for
fixed Hamiltonian (upper) is Q = 0.063
and for the fitted Hamiltonian (lower) is
Q = 0.013.

counterintuitively, when we do allow the coupling strength to
vary it is the |−〉 〈−| initial state that shows the greatest amount
of non-Markovianity, despite being an initial state for which
the site populations are initially at their equilibrium value. In
this case most of the non-Markovianity arises in the dynamics
of the off-diagonal elements of the density matrix. Allowing
V to be fitted greatly reduces the value of Q and results in an
average value of around 0.009.

The need to vary the system Hamiltonian shows the poten-
tial difficulties in finding the correct Lindblad master equa-
tion to model the dynamics of an exciton system so strongly
coupled to the environment. However we can conclude that
allowing the coupling strength between BChls to be optimised
is necessary if we wish to assess the general applicability of
Lindblad master equations and to quantify the degree of non-
Markovianity. Thus in all subsequent Lindblad fitting optimi-
sations, we have included the BChl coupling V in the set of
optimised parameters. Allowing the site energies to vary does
not appear to significantly impact the results.

We can examine the resulting form of the optimal Lind-
blad for this spectral density. If we write the Lindblad equation
in the form of Equation (9) and choose the operators Li to be
the Pauli operators, then the rate matrix h of the best fitting
Lindblad is given by

h = *.
,

1.96 0.04 + 0.42i −1.1 + 0.02i
0.04 − 0.42i 0.75 0.07 + 1.47i
−1.1 − 0.02i 0.07 − 1.47i 3.05

+/
-

. (24)

We can see that the strongest contribution is the diagonal term
for h33, which corresponds to pure dephasing in the site basis.
This is the form typically used when modelling the interac-
tion of the environment with excitonic systems.9–21 It is clear
however that there are significant contributions from other
Lindblad terms and that a pure dephasing Lindblad is not
nearly the optimal choice.

Diagonalising h we find that the optimal Lindblad is
dominated by two processes,

h(D) =
*.
,

4.34 0 0
0 1.39 0
0 0 0.03

+/
-

. (25)

The Lindblad operators corresponding to these processes are

L1 =

(
0.81 −0.058 + 0.0018i

−0.82 + 0.027i −0.81

)
L2 =

(
−0.37 −1.14 + 0.12i

−0.64 + 0.015i 0.37

)
.

(26)

By construction, L1 and L2 are traceless and orthogonal
(Tr(LiL

†

j ) = 2δij). But neither is hermitian, and so they cannot
simply be interpreted as dephasing in any basis.

Figure 4 shows the trace distance used to calcu-
late NBLP(ρ1, ρ2), where ρ1(0)= |1〉〈1| and ρ2(0)= |2〉〈2|.
Increases in the trace distance are seen throughout the evo-
lution up until it reaches its equilibrium state, showing that
non-Markovian dynamics persist beyond the 200 fs indicated
in the Lindblad fitting result. However, it is clear that the most

FIG. 3. Histograms showing the degree
of non-Markovianity Q for different ini-
tial states of a dimer coupled to a Brow-
nian spectral density. The figure on the
left is for the case where the coupling
between chromophores in the Hamilto-
nian V is included as a fitting parame-
ter. The right-hand figure is for a fixed
Hamiltonian.
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FIG. 4. The BLP measure of non-Markovianity D(ρ1(t), ρ2(t)) (Eq. (2))
as a function of time for the HEOM calculation in Figure 2 where ρ1(0)
= |1〉〈1 | and ρ2(0) = |2〉〈2 |. Regions of positive derivative correspond to
non-Markovian dynamics. The total non-Markovianity NBLP(ρ1, ρ2) = 0.14.

significant increases occur during the first 200 fs; thus, the
two measures show a reasonably good agreement. The total
increase in the trace distance over the 1 ps of dynamics gives
a total non-Markovianity of NBLP(ρ1, ρ2) = 0.14, which is of
a similar size to other work quantifying non-Markovianity for
the Brownian spectral density.23

Overall, we find that for these parameters of the Brownian
spectral density, the exciton dynamics shows small amounts
of non-Markovianity in both the BLP measure and the Lind-
blad fitting measure. The majority of the non-Markovianity
occurs in the first 200 fs of the dynamics, where we see
through the Lindblad fitting measure that it results in reduced-
amplitude oscillations in the site population, corresponding to
the reduced initial transfer of exciton density to the neighbour-
ing chromophore. However, the Lindblad fit is still capable of
capturing the key features of the dynamics, suggesting that for
these small values of the BLP metric, it may still be accept-
able to adopt the Markov approximation provided the coupling
strength in the Hamiltonian is treated as a free parameter.

IV. DISCRETE SPECTRAL DENSITY

Here we investigate the effect that high-frequency, dis-
crete modes of intra-molecular origin have on the degree
of non-Markovianity in the exciton dynamics. We look at
two key aspects. First, we investigate how the degree of
non-Markovianity scales with the number of intra-molecular
modes. Second, we study the effect of modes resonant with
the gap in the excitonic spectrum by looking at the frequency
dependence of the non-Markovianity for a single mode.

In order to get physically realistic parameters for the
coupling strength of intra-molecular modes, we performed
quantum chemistry calculations on an isolated bacteriochloro-
phyll-a molecule. The long phytyl chain was replaced with a
methyl group to reduce computational expense; we anticipate
that this truncation will not affect our conclusions. Using Gaus-
sian 0966 we used density functional theory (DFT) to optimise
the geometry and compute normal modes at the B3LYP/TZVP
level of theory. To determine the coupling strength between
these vibrational modes and the electronic excitation, we used
time dependent DFT (TDDFT) at the B3LYP/SVP level of
theory to compute the transition energy from the ground to
first-excited state at discrete points along each normal mode

and fit this function to a straight line. The gradient ds of the
resulting line gives the rate of change of excitation energy
with displacement along the normal mode s, which the lin-
ear approximation is related to the coupling parameters that
appear in Eq. (19) by

gs =

√
~

2msωs
ds . (27)

Here ms is the effective mass of the normal mode s and ωs is
the angular frequency. Thus for each vibrational mode of the
molecule, we obtained the corresponding angular frequency
and coupling strength. Figure 5 shows the corresponding
Huang-Rhys factors for these modes.

To model these vibrational modes, we performed exact
diagonalisation (with truncated boson number) of the system-
bath Hamiltonian introduced previously. For the dimer we
consider here, the dimensionality of the bath can be reduced
by defining a set of collective bath operators that act on both
sites. These are defined by

c(†)
s =

1
√

2
(b(†)

s,1 + b(†)
s,2), (28)

r(†)
s =

1
√

2
(b(†)

s,1 − b(†)
s,2), (29)

where modes described by c(†)
s influence both sites in phase,

and r(†)
s modes act on each site in an equal and opposite manner.

We can see this by substituting the inverse relations

b(†)
s,1 =

1
√

2
(c(†)

s + r(†)
s ), (30)

b(†)
s,2 =

1
√

2
(c(†)

s − r(†)
s ) (31)

into the bath and interaction Hamiltonians to obtain

HB =

Nm∑
s=1

~ωs(c
†
s cs + r†s rs), (32)

HI =

Nm∑
s=1

gs
√

2

[
(a†1a1 + a†2a2)(c†s + cs) + (a†1a1 − a†2a2)(r†s + rs)

]
.

(33)
Since we have restricted ourselves to the one exciton basis,
a†1a1 + a†2a2 is a constant of the dynamics. Thus displacement

of the modes c(†)
s results in a uniform shift in the energy of both

sites which has no effect on the dynamics. They are therefore

FIG. 5. Huang-Rhys factors for a selection of the normal modes of a
bacteriochlorophyll-a molecule.
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FIG. 6. The typical degree of non-Markovianity as a function of the number of modes for initial states ρ1 = |1〉〈1 | and ρ2 = |2〉〈2 |. The modes are ordered
from strongest to weakest coupling with Huang-Rhys factors ranging from 0.012 to 0.004 and are of frequency ω > 1014 Hz. Each calculation was run for a
total time of 1 ps. The measures NBLP and Q are defined in Eqs. (4) and (15), respectively.

ignored and we simply include in our simulations a single set
of bath modes defined by r(†)

s ,

HB =

Nm∑
s=1

~ωsr
†
s rs, (34)

HI =

2∑
i=1

Nm∑
s=1

(−1)i+1 gs
√

2
a†i ai(r

†
s + rs). (35)

The advantage of this approach is that for a small number of
high-frequency modes ~ω � kbT , the boson number can be
truncated (without significant loss of accuracy) at a level at
which exact diagonalization can still be performed.

The modes we are modelling here represent delta peaks in
the spectral density. In the physical system, these delta peaks
will be broadened due to interactions with the solvent environ-
ment, which acts to dampen the non-equilibrium oscillations of
the vibrational mode. The time scale for this damping process
depends upon the shape of the broadened peak. For Lorentzian
broadening, the peak is defined according to the function

C ′′(ω) =
2
√

2λγlω
2
0ω

(ω2 − ω2
0)2 + 2γ2

l ω
2

, (36)

where λ is the reorganisation energy, ω0 is the frequency of
the vibrational mode, and γl the broadening factor such that
C ′′(ω) → δ(ω − ω0) as γl → 0. For this shape function non-
equilibrium oscillations decay with e−γl t .27 Thus the results
that follow are accurate for modes where the time scale for
decay is long compared to the simulation time scale.

Here we look at how increasing the number of modes
affects the degree of non-Markovianity in the excitonic sub-
system. To do this, we perform exact diagonalisation on the
full system-bath Hamiltonian and trace out the bath modes to
obtain the excitonic reduced density matrix. For this calcula-
tion, due to the computational expense of the exact diagonali-
sation, we look only at the typical amount of non-Markovianity
for initial states where the exciton is fully localised, i.e., we
calculate NBLP(|1〉〈1| , |2〉〈2|) as well as the corresponding Q
values for these initial states. Again the bath modes are taken
to be in a thermal initial state at temperature T = 288 K. Fig-
ure 6 shows the amount of non-Markovianity present for a
symmetric dimer coupled to Nm discrete modes from our DFT
calculations with frequencies ω > 1014 Hz. The modes were
ordered by strength of coupling, with the strongest coupling
modes added first. The Huang-Rhys factors range from 0.012
to 0.004. The Fock space of the bath is capped to have at most
Nb = 15 quanta in total, which due to the small Huang-Rhys

FIG. 7. The degree of non-Markovian-
ity as a function of the frequency of a
single mode coupled to symmetric (left
panels) and asymmetric (right panels)
chromophore dimers. In each case met-
rics were extracted from 1 ps of dynam-
ics. Each point in the upper plots rep-
resents the non-Markovianity for a par-
ticular pair of orthogonal initial states,
whereas for the lower plots each point
is for a single initial state. Red and
arrows indicate the frequency degener-
ate with the gap between eigenvalues of
the excitonic Hamiltonian.
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factors and high frequency of the modes is sufficient to capture
essentially the exact dynamics. This was checked by increas-
ing the boson number until convergence to a single result was
observed. Each calculation is run for a total of 1 ps.

On the left of Figure 6, we can see that these discrete
modes introduce a significant increase in the BLP trace dis-
tance corresponding to non-Markovian dynamics. We see sim-
ilar results on the right hand side for our Lindblad-fitting
metric. As the number of modes increases, the degree of
non-Markovianity also increases. This is due to the increased
total coupling between the bath and the system as each new
mode is included. The decreasing gradient is due to the order-
ing of the modes that are added, starting from strongest to
weakest coupling. These results suggest that the underdamped
modes that exhibit prolonged non-equilibrium oscillations in
the high-frequency region of the spectral density are likely to
contribute in a combined way to increase the non-
Markovianity of the system dynamics. In other words, increas-
ing the amount of structure in the higher frequency regime
of the spectral density will correspond with increased non-
Markovianity.

A. Frequency dependence

Here we investigate how the frequency of a discrete
vibrational mode affects the degree of non-Markovianity.
For completeness and since we are looking for resonances
with the excitonic system, we study an asymmetric dimer
(ε1 − ε2 = 200 cm−1 (3.77 × 1013 Hz)) as well as a sym-
metric one (ε1 = ε2). In each case we couple the dimer to a
single mode with a Huang-Rhys factor, S = 0.1. We perform
a maximisation over 105 initial states chosen from a Lebe-
dev grid65 over a hemi-sphere of the Bloch sphere, with the
antipodes of these points forming their orthogonal counter-
parts. The bath mode is taken to be a thermal state at T = 288 K.
The BLP trace distance is then calculated between orthogonal
pairs and the Markovianity measure NBLP(ρ1, ρ2) (Eq. (4))
is calculated. We also apply our Lindblad fitting metric 〈Q〉,
which is applied to the all trajectories resulting from the ini-
tial states used for the BLP measure. The results are shown in
Figure 7.

Figure 7 shows the results for both the symmetric and
asymmetric dimers using the BLP measureNBLP and Lindblad
fitting measure Q. For the BLP metric in both the symmet-
ric and asymmetric cases, higher-frequency modes are found
to lead to more non-Markovian dynamics. The faster time
scale of dynamics for the high-frequency modes results in
a more rapid exchange of information between the system
and the environment and therefore a greater total exchange
over a picosecond of dynamics. Using this measure alone
one might conclude that there is nothing significant about the
non-Markovianity induced by resonant modes. However, for
the Lindblad fitting measure Q, we find a maximum in the
degree of non-Markovianity at the resonant frequencies. This
implies that although there is a greater total increase in the trace
distance for the case of higher frequency modes, the contribu-
tion of that increase to deviations from the Lindblad model is
smaller.

To understand why this is, we examined the time evolu-
tion of the trace distance used to calculate the BLP measure.

Figure 8 shows three typical examples for a low-frequency
mode (top panel), a resonant mode (middle panel), and a high-
frequency mode (bottom panel). It can be seen that although
the total increase in the trace distance is greatest for the high
frequency modes, the amplitude of the trace distance oscil-
lations is greatest for the near resonant modes. These large
amplitude oscillations in the BLP trace distance have a signifi-
cant effect on the dynamics of the exciton, resulting in irregular
oscillations in the site populations that the Lindblad equations
are unable to capture. The essential role resonant modes could
play in assisting energy transport, which is to drive transi-
tions between excitonic eigenstates and is observed for an
essentially Markovian semi-classical treatment of the resonant
mode.28 What we see here is that for a full quantum treat-
ment, these resonant vibrational modes induce large-amplitude
non-Markovian oscillations that correspond to a maximal devi-
ation from the Lindblad approximation. Whether this strong
non-Markovianity contributes to assisting energy transport is
an open question.

FIG. 8. Examples of the time evolution of the trace distance for three
trajectories taken from the upper left graph in Figure 7. All trajectories
are for the same pair of initial states of the exciton, ρ1 = |ψ〉〈ψ |, where
|ψ〉 =

√
0.79 |1〉 +

√
0.21eiπ/4 |2〉 and ρ2 is the orthogonal state. Increas-

ing trace distance corresponds to non-Markovian dynamics. Upper: a mode
well below resonance. Middle: a resonant mode. Lower: a mode well above
resonance.
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We have also shown that when trying to determine the
applicability of Lindblad master equations using the BLP
metric, the most important feature is the amplitude of the trace-
distance oscillations, rather than the total increase in the trace
distance. This is essentially an extension of the typical justifi-
cations for a Markovian approximation but extended to apply
to strict non-Markovianity measures. For small oscillations
in the BLP trace distance, it is easy for the monotonically
decreasing trace distance of a Lindblad evolution to provide
a good fit. Similarly if the time scale for the oscillations is
small compared to the time scale of the phenomena of inter-
est, then the dynamics can be well modelled by Lindblad
dynamics.

V. STRUCTURED SPECTRAL DENSITY

Having looked at the non-Markovianity in the presence
of a broad spectral density to model a low-frequency phonon
bath, and a discrete spectral density to model intra-molecular
modes, we now turn our attention to a more realistic model
that includes both. To do this, we include two environments:
a discrete vibrational mode that is treated quantum mechan-
ically on the same footing as the system Hamiltonian, and a
continuous bath as before.

The discrete bath mode is described as

HB1 = ~ωr†r, (37)

HI1 =

2∑
i=1

(−1)i+1 g
√

2
a†i ai(r

† + r), (38)

where r(†) is the annihilation (creation) operator for the collec-
tive vibrational mode defined in Section IV. The continuous
bath mode, modelled by HB2 and HI 2 , is treated through the
HEOM formalism; as before coupling strengths gs are defined
by the Brownian spectral density (Eq. (22)).

To model the dynamics of the total Hamiltonian H = HS

+ HB1 + HI 1 + HB2 + HI 2 , we used HS + HB1 + HI 1 as the sys-
tem Hamiltonian in the Phi software package. This effectively
creates a system of n sites, where n is the dimension of the
Hilbert space of the Hamiltonian after truncation of the boson
number for mode r. Each site represents a state of the exci-
tonic dimer and a state of the bath mode. We then ensured the
HEOM bath coupled only to the excitonic system by correlat-
ing coupling terms on sites with identical exciton states. We
then traced out states associated with mode r to recover the
excitonic density matrix.

FIG. 10. The BLP trace distance as a function of time for the combined
HEOM and discrete mode calculation in Figure 9 where the initial states
were ρ1(0) = |1〉〈1 | and ρ2(0) = |2〉〈2 |. The non-Markovianity measures
NBLP = 0.9.

Initially we chose the strongest coupling mode from our
DFT calculations whose frequency is ω > 1014 Hz. Figure 9
shows the result for a mode frequency ω = 2.26 × 1014 Hz,
Huang-Rhys factor S = 0.012, and for the |1〉 〈1| initial state
which is a representative example. The optimal Lindblad was
found by minimising 〈Q〉 over 105 pure initial states as in
Sections III and IV A. Here we see clearly the non-equilibrium
oscillations that the undamped vibrational modes induce on
the system dynamics. In the HEOM calculations where only
the phonon bath is included, the system reaches equilibrium
at around 700 fs. Here we see that beyond this point non-
equilibrium oscillations persist due to the undamped vibra-
tional mode. This can also be seen in the BLP trace-distance
evolution in Figure 10, where oscillations continue throughout
the evolution.

The BLP measure results in a non-Markovianity of
NBLP(ρ1, ρ2) = 0.9 which is around seven times larger than
for the system coupled only to the phonon bath. The Lind-
blad fitting on the other hand shows a smaller increase in
non-Markovianity of approximately a factor of two, with Q
= 0.013. An examination of Figure 9 illustrates the disparity,
as although the total increase in the trace distance is greater,
the effect on the dynamics has been minimal. This again illus-
trates that the amplitude of increases in the trace distance is
the decisive factor in determining the applicability of Lindblad
master equations.

In order to interpolate between the regime of a single
mode and the regime where many intra-molecular modes are
coupled to the system, we looked at the effect of a single effec-
tive vibrational mode which combines the coupling strength

FIG. 9. An LH2 dimer coupled to a Brownian spectral density and a discrete vibrational mode with frequencyω = 2.26×1014 and Huang-Rhys factor S = 0.012
at T = 288 K. Left: Site population for the full calculation (red) and the best fitting Lindblad evolution (blue). Right: trace distance between the fitted Lindblad
evolution and the full calculation over time corresponding to non-Markovianity Q = 0.013.
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FIG. 11. An LH2 dimer coupled to a Brownian spectral density and a discrete vibrational mode with frequency ω = 1.4 × 1014 Hz and Huang-Rhys factor S
= 0.026 at T = 288 K. Left: Site population for the full calculation (blue) and the best fitting Lindblad evolution (red). Right: trace distance between the Lindblad
evolution and the full calculation over time corresponding to non-Markovianity Q = 0.04.

FIG. 12. The trace distance as a function of time for the combined HEOM
and discrete mode calculation in Figure 11 where ρ1 = |1〉〈1 | and ρ2 = |2〉〈2 |.
The BLP non-Markovianity measure is NBLP = 1.2.

of neighbouring vibrational modes into one. 13 modes were
combined between frequencies 1.31×1014 Hz and 1.47×1014

Hz to form the single bath mode modelled by the Hamiltoni-
ans in Eqs. (37) and (38). The frequency of the effective mode
is given by the mean frequency and the Huang-Rhys factor is
given by the sum of the Huang-Rhys factors of the selected
modes (this commonly used approach34,37,67 conserves the
average number of quanta excited in the bath). The resulting
mode has frequencyω = 1.4×1014 Hz and Huang-Rhys factor
S = 0.026. Again we performed a minimisation of 〈Q〉 over 105

different pure initial states and showed the |1〉 〈1| initial state
as a representative example.

The results are shown in Figures 11 and 12. It can be seen
that for a mode of this coupling strength and frequency we start
to see a more significant deviation from the Lindblad models.
The site populations no longer show the characteristic oscil-
latory exponential decay but include irregularities throughout
the evolution. The amplitude of the long lived non-equilibrium
oscillations is now much greater than before. The average trace
distance between the Lindblad evolution and the HEOM calcu-
lation is Q = 0.04, and the BLP measure of non-Markovianity
gives a value of NBLP(ρ1, ρ2) = 1.2. Taking into account the
differences between the exact calculation and the Lindblad
seen here and our results earlier in Figure 6, where we showed
that non-Markovianity increases as a more detailed structure is
included in the spectral density, and considering our DFT cal-
culations which show that there are many more intra-molecular
modes that have been excluded from this particular calcula-
tion, the evidence suggests that a Lindblad equation would no
longer be able to reproduce the dynamics for a realistic spectral
density.

A. Frequency dependence

Finally we look at how the non-Markovianity depends
upon the frequency of the discrete vibrational mode in the

FIG. 13. Variation in the degree of non-
Markovianity for the Brownian spectral
density and a discrete mode as a function
of the frequency of the discrete vibra-
tional mode. The vibrational mode cou-
ples with Huang-Rhys factor S = 0.1. In
the upper plots, each point represents the
non-Markovianity for a different pair of
orthogonal initial states. For the lower
plots each point is for a single ini-
tial state. Red represents the frequency
which is on resonance with the differ-
ence in energy between the eigenstates
of the excitonic Hamiltonian.
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presence of a broad spectral density. The calculation per-
formed is equivalent to that in Section IV A, but with the
additional presence of the Brownian spectral density. Figure 13
shows the result for a symmetric and asymmetric dimer. The
degree of non-Markovianity overall is significantly reduced,
by approximately an order of magnitude, compared to the
calculations without the broad spectral density. The over-
all trends however are similar. The BLP non-Markovianity
measure again shows that high frequency modes induce the
greatest total trace-distance increase, due to the faster dynam-
ics and therefore faster exchange of information. Again the
Lindblad fitting measure shows that there is a maximum in the
non-Markovianity. Interestingly, however, this maximum is no
longer at the frequency resonant with the system Hamiltonian
(represented by the red points) but instead occurs at slightly
higher frequencies. The shift seems to correspond to the shift
in the system coupling strength V required to fit a Lindblad to
the broad spectral density in Section III. If we take the reso-
nant frequency of this fitted Hamiltonian (represented by the
arrows), we find that it matches well with the new maximum
in the non-Markovianity. This shows that the effective Hamil-
tonian of the system is really changed by the interaction with
a broad spectral density. It is possible that if light harvest-
ing systems have evolved to take advantage of resonance with
strongly coupling discrete modes, they will have evolved such
that the discrete mode is resonant with this effective system
Hamiltonian.

VI. CONCLUSIONS

We have studied the excitonic dynamics of a chromophore
dimer interacting with a vibrational environment in order to
assess the applicability of Lindblad-type master equations for
modelling photosynthetic energy transfer. The environment
was modelled using both HEOM, to model a broad phonon
bath, and exact diagonalisation, to treat discrete vibrational
modes of intra-molecular origin. To assess the validity of
Lindblad master equations, we employed a recently developed
method, based upon the trace distance, to measure the degree
of non-Markovianity by quantifying increases in the trace dis-
tance between two evolutions. We also introduced and applied
a measure of non-Markovianity which is based upon a general
parameterisation of a Lindblad master equation for the two-
site case. This general parameterisation allows one to quantify
the distance between a general two-state quantum evolution
and the best-fitting Lindblad evolution.

For a Brownian spectral density, parameterised to fit the
spectral density of the B777 complex, small amounts of non-
Markovianity are observed using both metrics. In particular,
the Lindblad fitting metric shows that this small amount of non-
Markovianity results in slightly reduced-amplitude oscilla-
tions in the site populations; however, overall the main features
of the dynamics are well-captured by a Lindblad equation.

We found that to find the optimal Lindblad evolution,
the system Hamiltonian had to be adjusted in such a way
that the coupling between the chromophores was increased.
This is direct evidence that interaction with an environment
can speed up the transfer process between chromophores
by introducing faster exciton transfer between the two sites.

However, whether similar adjustments to the Hamiltonian
would be required for a chromophore system of more than
two sites is unknown. What this does show, however, is that it
is not possible to accurately model exciton transfer by simply
employing a Lindblad formulation with a system Hamiltonian
parameterised separately.

We also investigated the significance of the frequency
of vibrational modes and whether any particular frequen-
cies introduced greater non-Markovianity. We investigated this
with and without the presence of a broad spectral density. We
found that for the trace-distance metric of non-Markovianity,
higher frequency modes introduce the most non-Markovianity.
This is because higher frequency modes introduce faster oscil-
lations in the trace distance resulting in a greater total increase
over a given time period.

For our Lindblad fitting measure of non-Markovianity,
however, we found that, for the case excluding the broad
spectral density, modes resonant with the difference between
eigenvalues of the system Hamiltonian showed the greatest
non-Markovianity. The difference between the two measures
can be understood in terms of the amplitude of oscillations
in the trace distance. The modes resonant with the excitonic
system induce the largest amplitude oscillations in the trace
distance. Thus the amplitude of oscillations in the trace dis-
tance is the decisive feature by which to determine whether
or not the Lindblad approximation is a good fit, as opposed to
simply observing the total trace-distance increase. This result
applies generally beyond applications to photosynthetic sys-
tems. Whether the observed large amplitude oscillations in the
trace distance for resonant modes contributes to the recently
observed increase in energy transfer rates27–33 is left as an
open question.

For the case where the broad spectral density was
included, we found that the maximum non-Markovianity
occurred at slightly higher frequencies than the resonant fre-
quency of the system Hamiltonian. We showed that this shift
is most likely due to the change in the effective Hamilto-
nian of the system caused by the interaction with the broad
spectral density. The Hamiltonian resulting from the Lindblad
fit to the broad spectral density, which contained a param-
eterised coupling strength V, was shown to have an eigen-
state energy difference closer to the frequency of maximum
non-Markovianity.

Finally, we looked at whether a Lindblad master equa-
tion would be capable of modelling the dynamics of a system
coupled to a more realistic spectral density. In particular, we
studied the effect of including some of the discrete vibra-
tional modes that are responsible for the structure in the high-
frequency region of the spectral density. For the dimer model
interacting with only discrete vibrational modes, we found that
as the number of discrete vibrational modes was increased, the
degree of non-Markovianity also increased. For a model that
included a single discrete intra-molecular mode and a broad
spectral density, the impact on the degree of non-Markovianity
was not very significant. However there are many such discrete
intra-molecular modes, so in order to bridge the gap we mod-
elled a single effective mode which incorporated the coupling
strengths of 13 modes of a similar frequency. Here we found
that the evolution deviates from the Lindblad approximation,
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introducing irregular oscillations in the site populations. Con-
sidering the number of discrete vibrational modes, and their
tendency to combine to increase non-Markovianity, we sus-
pect that a Lindblad approximation may not be suitable for
modelling such realistic spectral densities.

Note added in proof : A repository of all data generated in
the preparation of this paper is available online.68
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63R. J. Cogdell, A. Gall, and J. Köhler, Q. Rev. Biophys. 39, 227 (2006).
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