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Projection-based embedding provides a simple, robust, and accurate approach for describing a small part
of a chemical system at the level of a correlated wavefunction method while the remainder of the system
is described at the level of density functional theory. Here, we present the derivation, implementation,
and numerical demonstration of analytical nuclear gradients for projection-based wavefunction-in-density
functional theory (WF-in-DFT) embedding. The gradients are formulated in the Lagrangian framework to
enforce orthogonality, localization, and Brillouin constraints on the molecular orbitals. An important aspect
of the gradient theory is that WF contributions to the total WF-in-DFT gradient can be simply evaluated
using existing WF gradient implementations without modification. Another simplifying aspect is that Kohn-
Sham (KS) DFT contributions to the projection-based embedding gradient do not require knowledge of the
WF calculation beyond the relaxed WF density. Projection-based WF-in-DFT embedding gradients are thus
easily generalized to any combination of WF and KS-DFT methods. We provide numerical demonstration
of the method for several applications, including calculation of a minimum energy pathway for a hydride
transfer in a cobalt-based molecular catalyst using the nudged-elastic-band method at the CCSD-in-DFT
level of theory, which reveals large differences from the transition state geometry predicted using DFT.

I. INTRODUCTION

The theoretical description of many chemical processes
demands accurate, ab initio electronic structure theories.
However, the study of complex reactive processes, includ-
ing those arising in inorganic and enzyme catalysis, gives
rise to the need for a compromise between accuracy and
the ability to complete the computation in a reasonable
amount of time. For systems in which the complicated
chemical rearrangements (e.g. bond breaking and form-
ing) occurs in a local spatial region, an effective strategy
for balancing accuracy and computational cost is to em-
ploy one of various multiscale embedding strategies.1–25

Generally, embedding methodologies hinge on the con-
dition that a system can be efficiently partitioned into
a local subsystem that demands a high-level treatment
and an environment that can be treated with a lower
(and computationally less expensive) level of theory.

The current paper focuses on projection-based
embedding,9,26 a DFT-based embedding theory in which
subsystem partitioning is performed in terms of local-
ized Kohn-Sham (KS) molecular orbitals (LMOs). The
method describes subsystem interactions at the level of
KS and allows for the partitioning of the subsystems
across covalent and even conjugated bonds, and it enables
the use of relatively small subsystem sizes for an embed-
ded WF description. A recent review of projection-based
WF-in-DFT embedding is available in Ref. 26.

Projection-based embedding has proven to be a use-
ful tool in a wide range of chemical contexts in-
cluding transition-metal complexes,19,20,24,27 protein ac-

a)tfm@caltech.edu

tive sites,21,23 excited states28–30 and condensed phase
systems,16 among others.31–37 The development of ana-
lytical nuclear gradients for projection-based embedding
will expand its applicability to include geometry opti-
mization, transition state searches, and potentially ab
initio molecular dynamics. Analytical nuclear gradients
already exist for a number of other embedding method-
ologies, including the incremental molecular fragmenta-
tion method,38 fragment molecular orbital method,39–41

QM/MM,42–44 ONIOM,45–48 EMFT,17,49 frozen density
embedding,50–53 and subsystem DFT.54–56 However, the
projection-based approach provides a number of advan-
tages for WF-in-DFT embedding calculations and leads
to a distinct analytical gradient theory, which we derive
and numerically demonstrate in several applications.

In section II A we outline projection-based WF-in-DFT
embedding and in section II B we provide the deriva-
tion of its analytical nuclear gradients. Section IV nu-
merically validates the analytical nuclear gradient the-
ory and its implementation in Molpro57 via compari-
son with finite difference calculations, as well as present-
ing results for optimizing geometries in benchmark sys-
tems and the calculation of a minimum energy profile for
an organometallic reaction using the nudged-elastic-band
(NEB) method. We additionally provide the analytical
nuclear gradient theory for WF-in-DFT embedding with
atomic orbital (AO) truncation18 in Appendices C and
D.
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II. PROJECTION-BASED EMBEDDING ANALYTICAL
NUCLEAR GRADIENTS

A. Projection-based Embedding Energy Theory

Projection-based WF-in-DFT embedding relies on the
partitioning the LMOs of a system into two subsystems.
Subsystem A contains the LMOs that are treated using
the WF method and subsystem B contains the remain-
ing LMOs that are treated using KS. This WF-in-DFT
procedure is accomplished by first performing a KS cal-
culation on the full system to obtain a set of KS MOs.
The occupied KS MOs are then localized and partitioned
into subsystems A and B. Finally, subsystem A is treated
using the WF method in the presence of the embedding
potential created by the frozen LMOs of subsystem B.
Note that the cost of the KS calculation on the full sys-
tem is typically negligible in comparison to the subsystem
WF calculation. This results in our working equation for
projection-based WF-in-DFT embedding,9

EWF-in-DFT

[
Ψ̃A;γA,γB

]
= EWF

[
Ψ̃A
]

+ tr
[
(d̃A − γA)vemb

[
γA,γB

]]
+ EDFT

[
γA + γB

]
− EDFT

[
γA
]

+ µtr
[
d̃APB

]
,

(1)

where Ψ̃A and EWF[Ψ̃A] are the WF and energy of sub-

system A, d̃A is the subsystem A one-particle reduced
density matrix that corresponds to Ψ̃A, EDFT is the KS
energy, and γA and γB are respectively the KS subsys-
tem A and B one-particle densities that equal the full
system KS density, γ, when summed together. Through-
out, we shall use a tilde to indicate quantities that have
been calculated using the WF method. The embedding
potential, vemb, is defined as

vemb

[
γA,γB

]
= g

[
γA + γB

]
− g

[
γA
]
, (2)

where g includes all KS two-electron terms,

(g[γ])κν =
∑
λσ

γλσ

(
(κν|λσ)− 1

2
xf (κλ|νσ)

)
+ (vxc[γ])κν ,

(3)
and where κ, ν, λ and σ label atomic orbital basis func-
tions, (κν|λσ) are the two-electron repulsion integrals, xf
is the fraction of exact exchange and vxc is the exchange-
correlation (XC) potential matrix. The level-shift opera-
tor, µPB, is given by

µPB = µSγBS, (4)

where S is the overlap matrix. In the limit of µ→∞, the
LMOs that make up subsystems A and B are enforced
to be exactly orthogonal, eliminating the non-additive ki-
netic energy present in other embedding frameworks.58,59

In practice, finite values of µ in the range of 104 hartree to

107 hartree are found to provide accurate results regard-
less of chemical system.9 If greater accuracy is needed, a
perturbative correction outlined in Ref. 9 can be added
to the WF-in-DFT energy expression to account for the
finiteness of µ, but in practice, this correction is found
to contribute negligibly to the total energy and is thus
neglected here.

Projection-based embedding can also be used for DFT-
in-DFT embedding via a simplified version of Eq. 1. The
working equation for projection-based DFT-in-DFT em-
bedding is9

EDFT-in-DFT

[
γ̃A;γA,γB

]
= EDFT

[
γ̃A
]

+ tr
[(
γ̃A − γA

)
vemb

[
γA,γB

]]
+ EDFT

[
γA + γB

]
− EDFT

[
γA
]

+ µtr
[
γ̃APB

]
.

(5)

The only differences between WF-in-DFT and DFT-in-
DFT embedding is that the first term on the RHS of
Eq. 1 is replaced with the KS energy on subsystem A,
EDFT

[
γ̃A
]
, and in the second and last terms d̃A is re-

duced to the subsystem A KS density matrix, γ̃A.

B. Projection-based WF-in-DFT Embedding Gradient
Theory

Since projection-based embedding is a non-variational
theory, its analytical gradient is conveniently derived us-
ing a Lagrangian approach. We first construct a La-
grangian based on the projection-based WF-in-DFT en-
ergy. We then minimize the Lagrangian with respect
to the variational parameters in the embedding energy,
which include the subsystem A WF and the LMO co-
efficients. Then we show how to solve for each of the
Lagrange multipliers and provide the working equation
for the gradient of the total energy.

For consistency in notation, the MO coefficient ma-
trix C refers to the entire set of KS MOs (occupied and
virtual). The submatrix of C that refers to the (occu-
pied) LMOs is denoted as L with column indices i, j, k, l.
The submatrix of C that refers to the canonical virtual
space is denoted as Cv with column indices a, b, c, d. The
indices m,n, p, q are used to index generic molecular or-
bitals.

C. Total Energy Lagrangian

We now derive the total energy Lagrangian for
projection-based WF-in-DFT embedding. Where appro-
priate we will provide WF method specific examples (e.g.
MP2) of general terms outlined in the equations. The
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WF-in-DFT Lagrangian is

L
[
C, Ψ̃A,Λ,x, zloc, z

]
=

EWF-in-DFT

[
Ψ̃A;γA,γB

]
+
∑
s

ΛWF,A
s cs

+
∑
pq

xpq
(
C†SC− 1

)
pq

+
∑
i>j

zloc
ij rij

+
∑
ai

zai
(
F
[
γA + γB

])
ai

.

(6)

The first term on the right hand side (RHS) of Eq. 6 is
the projection-based WF-in-DFT embedding energy de-
scribed by Eq. 1. The second term on the RHS of Eq. 6
contains any constraints, cs, and the corresponding La-
grange multipliers, ΛWF,A

s , that arise from ensuring that
the Lagrangian is variational with respect to parameters
in the WF method. The third term on the RHS con-
strains the KS MOs, C, to be orthonormal, which ac-
counts for the basis set being atom centered; this term is
commonly referred to as the Pulay force60 and arises from
the atomic orbital basis set being atom centered. The
localization conditions, rij = 0, take into account how
the KS MOs are localized before being selected for sub-
systems A and B. This is important because the LMOs
will have a different dependence on nuclear perturba-
tion than canonical MOs. In this work, we use Pipek-
Mezey localization61 to obtain LMOs. Generalization
to other localization methods (e.g. Boys62 and intrin-
sic bond orbitals63) is straightforward. The localization
conditions for Pipek-Mezey are

rij =
∑
C

(
SCii − SCjj

)
SCij = 0 for all i > j, (7)

where C corresponds to an atom in the molecule. The
matrices SC are defined as

SCkl =
∑
α∈C

∑
β

(Lα,kSαβLβ,l + Lα,lSαβLβ,k), (8)

where the summation over α is restricted to ba-
sis functions at atom C. The Brillouin conditions,(
F
[
γA + γB

])
ai

= 0, reflect how the KS MOs are opti-
mized before being used to construct subsystems A and
B. The Brillouin conditions are only needed because sub-
system B is frozen at the KS level of theory. However, due
to the non-additivity of the XC potential, the Lagrange
multipliers, z, span the full virtual-occupied space.

The type and number of constraints applied to the WF
method depend on the chosen method. For example, if
the WF method is MP2 then the constraints are∑

s

ΛMP2,A
s cs =

∑
pq

x̃pq

(
C̃A†SC̃A − 1

)
pq

+
∑
ai

z̃ai
(
FA
)
ai

∣∣
i∈A

,
(9)

where the first term on the RHS of Eq. 9 constrains the
Hartree-Fock MOs, C̃A, to be orthonormal, the condition

i ∈ A restricts the sum to occupied MOs in subsystem
A, and the second term on the RHS are the Brillouin
conditions using the embedded Fock matrix, FA. The
embedded Fock matrix is defined as9

FA = h + g
[
γ̃A
]

+ vemb

[
γA,γB

]
+ µPB, (10)

where h is the standard one-electron Hamiltonian, g in-
cludes all of the usual HF two-electron terms and γ̃A

is the subsystem A HF one-particle density. These con-
straints also arise in the derivation of the MP2 analytical
nuclear gradient.64

For the projection-based WF-in-DFT energy to equal
the Lagrangian, the Lagrangian must be minimized with
respect to all of its parameters, including Ψ̃A, C, and all
of the Lagrange multipliers.

D. Minimizing the Lagrangian with respect to the
variational parameters of the WF method

Upon minimizing the WF-in-DFT Lagrangian with re-
spect to Ψ̃A, only terms associated with the first two
terms on the RHS of Eq. 6 survive, all of which are fa-
miliar from the WF Lagrangian for the corresponding
WF gradient theories.

∂L
∂Ψ̃A

=
∂EWF

[
Ψ̃A
]

∂Ψ̃A
+ tr

[
∂d̃A

∂Ψ̃A
vemb

[
γA,γB

]]

+ µtr

[
∂d̃A

∂Ψ̃A
PB

]
+

∂

∂Ψ̃A

∑
s

ΛWF,A
s cs = 0

(11)

Since the embedding potential is independent of Ψ̃A,
the Z-vector coupled perturbed Hartree-Fock (Z-CPHF)
equations of any post-HF method are only impacted
through the eigenvalues of the subsystem A HF WF.
Therefore, the solutions for the WF Lagrange multipliers
(e.g. x̃ and z̃ for MP2 in Eq. 9) are obtained using the
standard implementation of the WF gradient no matter
what KS method is selected to describe subsystem B.
However, if an alternative embedding potential is used
that depends on the subsystem A WF, such as the Huz-
inaga constraint (i.e. Ref. 65), then the formulation of
the WF gradient is changed; the Z-CPHF equations for a
general WF method would need to be modified to include
the contributions from the derivative of the embedding
potential with respect to the subsystem A WF, Ψ̃A.

E. Minimizing the Lagrangian with respect to the MO
coefficients

The remaining Lagrange multipliers, zloc, x, and z in
Eq. 6, are determined by minimizing the WF-in-DFT La-
grangian with respect to the variational parameters of the
KS method, namely the MO coefficients, C. Differentia-
tion of the Lagrangian with respect to these parameters
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yields ∑
µ

Cµ,p
∂L
∂Cµ,q

= Epq +
(
a
[
zloc
])
pi

+ (D[z])pq + 2xpq = 0,

(12)

where

Epq =
∑
µ

Cµ,p

(
∂EWF-in-DFT

[
Ψ̃A;γA,γB

]
∂Cµ,q

+
∂

∂Cµ,q

∑
s

ΛWF,A
s cs

)
,

(13)

(
a
[
zloc
])
pi

=
∑
µ

Cµ,p

(∑
k>l

zloc
kl

∂rkl
∂Cµ,q

)
=
∑
k>l

Bpi,klzloc
kl ,

(14)

(D[z])pq =
∑
µ

Cµ,p

(∑
ak

zak
∂
(
F
[
γA + γB

])
ak

∂Cµ,q

)
=
∑
ak

Dpq,akzak

=
(
F[γA + γB]z

)
pq

∣∣∣
q∈occ

+
(
F
[
γA + γB

]
z†
)
pq

∣∣∣
q∈vir

+ 2(V[z̄])pq

∣∣∣
q∈occ

,

(15)

and

2xpq =
∑
µ

Cµ,p

(∑
mn

xmn
∂Smn
∂Cµ,q

)
. (16)

The 4-dimensional tensors, B and D, are expanded in Ap-
pendices A and B, respectively, z̄ corresponds to z + z†,
and V[z̄] includes all two-electron terms of the gener-
alized Fock matrix and is shown explicitly in Appendix
B. Since the embedded Fock matrix, FA, contains the
embedding potential, vemb, its derivative with respect to
the MO coefficients, C, is nonzero resulting in the WF
relaxed density being needed to construct E in Eq. 13,
which is explicitly shown in Appendix B. Therefore, the
subsystem A WF gradient only affects the embedding
contributions to the gradient through the WF relaxed
density.

We now show that solving for the Lagrange multipliers
leads to familiar coupled perturbed equations. Combin-
ing the stationary conditions described by Eq. 12 with
the auxiliary conditions x = x† yields the linear Z-vector
equations64

(1− Ppq)
(
E + D[z] + a

[
zloc
])
pq

= 0, (17)

where Ppq permutes the indices p and q, which is used to
solve for z and zloc. The matrix x is then obtained as

xpq = −1

4
(1 + Ppq)

(
E + D[z] + a

[
zloc
])
pq

. (18)

The Lagrange multipliers zloc pertain to the occupied-
occupied MO space; considering only the occupied-
occupied part of Eq. 17 yields

(1− Pij)
(
E + D[z] + a

[
zloc
])
ij

= 0. (19)

Using the Brillouin conditions and the knowledge that
zab = zij = zia = 0, Eq. 19 can be further simplified by
showing that

(1− Pij)(D[z])ij = 0. (20)

The solutions, zloc, are thus independent of z, such that
Eq. 19 reduces to

Eij − Eji +
∑
k>l

(Bij,kl − Bji,kl)zloc
kl = 0. (21)

These are the Z-vector coupled perturbed localization (Z-
CPL) equations, which are used to solve for zloc. Subse-
quently, a

[
zloc
]

can be computed according to Eq. 14.
The Lagrange multipliers z pertain to the virtual-

occupied MO space; considering only the virtual-
occupied part of Eq. 17 yields

(1− Pai)
(
E + D[z] + a

[
zloc
])
ai

= 0, (22)

which further simplifies to(
E + a

[
zloc
]

+ F
[
γA + γB

]
z− zF

[
γA + γB

]
+ 2V[z̄]

)
ai

= 0.
(23)

These are the Z-vector coupled perturbed Kohn-Sham
(Z-CPKS) equations. Having solved the Z-CPL and Z-
CPKS equations, the remaining Lagrangian multipliers
associated with the orthogonality constraints, x, can be
obtained from Eq. 18.

F. Gradient of the Total Energy

Once the Lagrangian is minimized with respect to all
variational parameters, the gradient of the total energy
takes the form

dEWF-in-DFT

dq
=

dL
dq

=
∂L
∂q

+
∂L
∂Ψ̃A

Ψ̃A

∂q
+
∂L
∂C

∂C

∂q

=
∂L
∂q
.

(24)

Since the Lagrangian is minimized with respect to the
subsystem A WF and the KS LMO coefficients, calcula-
tion of the WF and KS LMO responses to nuclear per-
turbation, ∂Ψ̃A/∂q and ∂C/∂q respectively, are avoided.
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This yields the following expression for the gradient,

E
(q)
WF-in-DFT = E

(q)
WF

[
Ψ̃A
]

+
∑
λν

d̃A
λν(v

(q)
emb)λν

+ µ
∑
λν

d̃A
λν(PB,(q))λν +

∑
s

ΛWF,A
s c(q)s

− E(q)
DFT[γA] + E

(q)
DFT[γA + γB]−

∑
λν

γA
λν(v

(q)
emb)λν

+
∑
ij

zloc
ij r

(q)
ij +

∑
ai

zai
(
F
[
γA + γB

])(q)
ai

+
∑
mn

xmnS
(q)
mn,

(25)

where the superscript (q) denotes the explicit deriva-
tive of the quantity with respect to a nuclear coordinate.

Eq. 25 can be further simplified by folding
∑
s ΛWF,A

s c
(q)
s

into the first three terms on the RHS of Eq. 25, yielding

E
(q)
WF-in-DFT = EqWF

[
Ψ̃A
]

+
∑
λν

(d̃A
rel)λν(v

(q)
emb)λν

+ µ
∑
λν

(d̃A
rel)λν(PB,(q))λν

− E(q)
DFT[γA] + E

(q)
DFT[γA + γB]−

∑
λν

γA
λν(v

(q)
emb)λν

+
∑
ij

zloc
ij r

(q)
ij +

∑
ai

zai
(
F
[
γA + γB

])(q)
ai

+
∑
mn

xmnS
(q)
mn.

(26)

Here, EqWF[Ψ̃A] denotes the total derivative of the sub-
system A WF energy with respect to nuclear coordinate,
which can be directly calculated using existing WF gradi-
ent implementations, and d̃A

rel is the WF-relaxed density
for subsystem A. For example, the MP2-relaxed density
is

d̃A
rel = d̃A + C̃Az̃C̃A,† = γ̃A + d(2) + C̃Az̃C̃A,†, (27)

which contains the subsystem A Hartree-Fock density,
γ̃A, the MP2 density matrix, d(2), and the solutions of
the subsystem A Brillouin conditions, C̃Az̃C̃A,†. Eq. 26
can be expressed in terms of the WF gradient on subsys-
tem A and the derivative AO integrals, yielding our final
expression for the projection-based WF-in-DFT analyti-
cal gradient,

E
(q)
WF-in-DFT = EqWF

[
Ψ̃A
]

+ tr
[
dah

(q)
]

+ tr
[
XS(q)

]
+

1

2

∑
µνλσ

Dµνλσ(µν|λσ)(q)

+ E(q)
xc

[
γA + γB

]
− E(q)

xc

[
γA
]

+ tr
[(

d̃A
rel − γA

)(
v(q)

xc

[
γA + γB

]
− v(q)

xc

[
γA
])]

.

(28)

The effective one-particle density da and effective two-
particle density D are defined

da = γB + CzC†, (29)

and

Dµνλσ =
(
γA + γB

)
µν

(db)λσ − γ
A
µν(dc)λσ

− 1

2
xf

((
γA + γB

)
µλ

(db)νσ − γ
A
µλ(dc)νσ

)
.

(30)

The effective one-particle densities db and dc are defined

db = γA + γB + 2CzC† + 2d̃A
rel − 2γA, (31)

and

dc = −γA + 2d̃A
rel. (32)

The matrix X is defined

X = CxC† +
∑
i>j

∂rij
∂Sµν

zloc
ij

= Xloc − 1

2
L
(
E + 2V[z̄]

)
L†

− 1

2

(
Cv(zF)L† +

(
Cv(zF)L†

)†)
+ µ

(
d̃A

relSγ
B + γBSd̃A

rel

)
,

(33)

where(
Xloc

)
µν

= −1

2

(
La
[
zloc
]
L†
)
µν

+
∑
i>j

∂rij
∂Sµν

zloc
ij . (34)

The second term on the RHS of Eq. 34 is expanded in
Appendix A.

The analytical nuclear gradient expression for
projection-based DFT-in-DFT closely follows that for
WF-in-DFT, with regard to evaluation of both the
Lagrange multipliers (Eq. 12) and the final gradient
(Eq. 28). To obtain the corresponding DFT-in-DFT ex-

pressions, d̃A
rel becomes the subsystem A KS density

d̃A
rel = γ̃A, (35)

which affects the evaluation of E in Eq. 12 (expanded in
Eq. B1) and the evaluation of the final gradient expres-
sion, Eq. 28. Additionally, the first term on the RHS of
the final gradient expression, Eq. 28, is replaced with the
subsystem A KS gradient, EqDFT

[
γ̃A
]
.

III. COMPUTATIONAL DETAILS

The implementation of projection-based WF-in-DFT
embedding gradients is available in the 2019 general re-
lease of Molpro.57 In all embedding calculations reported
here, unless otherwise specified, the Pipek-Mezey local-
ization method61 is used with the core and occupied MOs
localized together. The subsystem A region is chosen
by including any LMOs with a net Mulliken population
larger than 0.4 on the atoms associated with subsystem
A, although more sophisticated partitioning algorithms
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have been introduced.27 A level-shift parameter of µ =
106 hartree is used for all embedding calculations. The
perturbative correction to using a finite value of µ in Eq. 5
is less than 20 microhartrees for the applications pre-
sented here and thus not included (accomplished by spec-
ifying the option HF COR = 0). Throughout this work, all
embedding calculations are described using the nomen-
clature “(WF method)-in-DFT/basis,” where the WF
method describes subsystem A and the KS method de-
scribes subsystem B. For some embedding calculations a
mixed-basis set is used and is denoted by “(WF method)-
in-DFT/large-basis:small-basis,” where the large basis is
used to describe subsystem A and the small basis is used
to describe subsystem B.

All SCF calculations employ a tighter threshold than
default for MO convergence by specifying the option
ORBITAL = 1 × 10−7 a.u. in Molpro. All KS cal-
culations used in projection-based embedding are done
without density fitting, employing the LDA,66,67 PBE,68

PBE0,69 and LDAX functionals with the def2-TZVPP,
def2-SVP, def2-ASVP,70,71 cc-pVDZ,72 and 6-31G73 basis
sets. Note that the def2-ASVP basis set used in Molpro is
constructed by adding one set of even tempered diffuse
functions to the def2-SVP basis set. The LDAX func-
tional is constructed by including 50% exact exchange
and reducing the weight of the DIRAC functional to 50%
in the LDA functional. For the calculations in sections
IV A and IV B 2, the XC functional is evaluated on a
fixed-pruned grid with index 7 (Ref. 74). For the opti-
mized geometries shown in section IV B, and the mal-
ondialdehyde calculations in section IV C the XC func-
tional is evaluated on an adaptively generated quadra-
ture grid that reproduces the energy of the Slater-Dirac
functional to a specified threshold accuracy of 10−10Eh.
All WF calculations are performed with the frozen-core
approximation, without density fitting, employing the
MP2,75 CCSD,76,77 and CCSD(T)78 correlation treat-
ments with the def2-TZVPP, def2-SVP, cc-pVDZ and
6-31G basis sets. Even though the density fitting approx-
imation is not used for the WF methods in this study,
density fitted gradients are available for the aforemen-
tioned WF methods.79,80 The default values for integral
screening were used in Molpro. For all Z-CPKS calcula-
tions an iterative subspace solver employing the David-
son algorithm81,82 is used with a convergence threshold
of 1× 10−6 a.u. For all Z-CPHF calculations needed for
the subsystem A WF gradient an iterative solver with
a convergence threshold of 1 × 10−7 a.u. is used. Grid
weight derivatives are included for all gradient calcula-
tions involving the XC functional and potential.

For all geometry optimizations the number of LMOs
in subsystem A is kept unchanged throughout the opti-
mization. A natural way of enforcing this in future work
is to employ even-handed partitioning,27 although this
was not needed in the examples studied here; the default
procedure based on net Mulliken population sufficed to
keep subsystem A unchanged. All geometries are opti-
mized using the translation-rotation-internal coordinate

system devised by Wang and Song,83 which is available in
the GeomeTRIC package.84 Convergence parameters for
the geometry optimizations follow the default parame-
ters used by Molpro, namely that the maximum gradient
value becomes less than 3 × 10−4 hartree/bohr and the
energy change between adjacent steps becomes less than
1× 10−6 hartree or the maximum component of the step
displacement becomes less than 3×10−4 bohr. The max-
imum gradient value is evaluated in the Cartesian basis.
All geometries are provided in the supporting informa-
tion.

Nudged elastic band (NEB)85 calculations are run us-
ing the implementation of the method in the atomic sim-
ulation environment (ASE) package.86 All NEB calcu-
lations use Molpro forces which are provided through a
Molpro calculator interface within the ASE package.

The intramolecular proton transfer of malondialdehyde
is modeled with an NEB consisting of 15 images con-
nected by springs with spring constants of 0.1 eV/Å2.
The CCSD/def2-aSVP, CCSD-in-LDA/def2-aSVP and
LDA/def2-aSVP optimized NEBs used the image depen-
dent pair potential (IDPP) method87 as the initial guess
for the band with reactant and product geometries pre-
viously optimized at the corresponding level of theory.
All NEB calculations for malondialdehyde are converged
with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) up-
date of the Hessian and by enforcing that the maximum
gradient value is less than 0.01 eV/Å2.

The intramolecular proton transfer of the organometal-
lic cobalt complex is modeled with an NEB consisted
of images connected by springs with spring constants of
9 eV/Å2. The PBE0/cc-pVDZ climbing image NEB,88

consisting of 26 images, used the IDDP method as the
initial guess for the band with the reactant geometry pre-
viously optimized. The CCSD-in-PBE0/cc-pVDZ NEB
consisting of 23 images, used its optimized reactant and
the climbing image NEB converged at the PBE0/cc-
pVDZ level of theory as its initial guess. Since the prod-
uct is spatially far away from the reactant, an intermedi-
ate geometry between the transition state and the prod-
uct is used as the endpoint of the NEB. This interme-
diate geometry is determined by initially converging a
NEB with an extra image such that the maximum force
dropped below 0.3 eV/Å2. Then the second to last im-
age is used as the new endpoint and a new NEB is con-
verged. The PBE0/cc-pVDZ climbing image NEB is op-
timized using the FIRE89 algorithm using a convergence
criteria of 0.05 eV/Å2 for the maximum gradient value.
The projection-based WF-in-DFT embedding NEB is op-
timized at the CCSD-in-PBE0/cc-pVDZ level of theory
using the FIRE algorithm with a convergence criteria of
0.25 eV/Å2 for the maximum gradient value.

The CCSD-in-PBE0/cc-pVDZ calculations used for
the NEB optimization are performed by specifying 51 oc-
cupied MOs to be in subsystem A using the N ORBITALS
option and by using AO truncation with a threshold of
1 × 10−3 a.u. An even-handed selection of AOs were used
along the NEB by creating a union of the AOs that were
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selected for each image by the truncation procedure to
ensure that the NEB traversed a smooth potential energy
surface. The final, reported energies of the WF-in-DFT
NEB are performed using the PNO-LCCSD90/cc-pVDZ
and PNO-LCCSD-in-PBE0/cc-pVDZ levels of theory.
Both the PNO-LCCSD and PNO-LCCSD-in-PBE0 cal-
culations are performed with density fitting using the
cc-pVTZ/JKFIT91 (the def2-TZVPP/JKFIT92 basis set
was used for cobalt since the cc-pVTZ/JKFIT basis set
was not available) and the cc-pVTZ/MP2FIT93 density
fitting basis sets. Tighter domain approximations were
employed for all PNO-LCCSD calculations by specifying
the DOMOPT=TIGHT option. Additionally, the Boughton-
Pulay completeness criterion was used for the selection of
the primary projected atomic orbitals domain by specify-
ing the option THRBP=1 and the Pipek-Mezey localization
method was used. For the PNO-LCCSD-in-PBE0 calcu-
lations, AO truncation is not used, the core and valence
DFT molecular orbitals are localized separately using the
Pipek-Mezey localization method, and the subsystem A
orbitals are selected using the default procedure based on
the Mulliken population threshold.

All calculations using AO truncation18 ensure that
at least one AO is kept per atom (specified by option
AO PER ATOM) to make evaluation of the integral deriva-
tive contributions from the one electron Hamiltonian sim-
pler within Molpro. This adds a negligible amount of AO
functions than would have been selected using only the
density threshold parameter18 for the systems studied in
this paper. In all embedding geometry optimizations that
employ AO truncation, the number of truncated AOs is
fixed using the STOREAO option to ensure smoothness of
the potential energy function. Upon convergence, the
truncated AO list is reevaluated using the same density
threshold parameter; if the number of kept AOs remains
a subset of the original list of truncated AOs then the
optimization is converged.

IV. RESULTS AND DISCUSSION

A. Comparison of Analytical and Numerical Gradients

The implementation of the projection-based WF-in-
DFT analytical gradient is tested by comparison with
the gradient evaluated by numerical finite difference for
a distorted geometry of ethanol. The finite difference
gradients are evaluated using a four-point central differ-
ence formula with a base step size of 0.01 bohr. The
mean absolute error (MAE) between the analytical and
finite difference gradients is reported for a range of em-
bedding calculations in Table I. These results show that
the analytical nuclear gradient for projection-based WF-
in-DFT embedding is essentially numerically exact with
respect to the gradients calculated by finite difference.
Comparison of the results obtained using HF over the
full system versus using LDA over the full system illus-
trate that some of the finite difference error comes from

TABLE I. Mean absolute error between the analytically and
numerically determined embedding nuclear gradient for a dis-
torted geometry of ethanol. The basis set 6-31G is used for all
calculations. The distorted geometry of ethanol is provided
in the supporting information.

Method MAE (hartree/bohr)
HF 5.00× 10−9

HF-in-HF 4.61× 10−8

LDA 1.48× 10−8

LDA-in-LDA 7.23× 10−8

HF-in-LDA 5.24× 10−8

MP2-in-LDA 5.37× 10−8

CCSD-in-LDA 5.36× 10−8

CCSD(T)-in-LDA 5.26× 10−8

CCSD-in-LDA (AO)a 3.48× 10−8

CCSD(T)-in-LDA (AO)a 3.40× 10−8

CCSD(T)-in-PBE0 5.26× 10−8

CCSD(T)-in-PBE0 (AO)a 1.12× 10−7

aCalculations were performed with AO truncation with a
density threshold of 1× 10−1a.u.

the DFT exchange-correlation grid. Comparison of the
HF-in-HF results with full HF and of the LDA-in-LDA
results with full LDA illustrate the modest effect of us-
ing a large-but-finite value for the level-shift operator in
projection based embedding. These results confirm the
correct implementation of projection-based WF-in-DFT
analytical nuclear gradients.

B. Optimized Geometries

1. Ethanol

As a proof of concept, CCSD-in-LDA/6-31G analytical
nuclear gradients are employed to determine the ground
state geometry of ethanol, which is shown in Fig. 1. For
this simple case, the O-H moiety is treated by CCSD
and the remainder of the molecule is treated by LDA.
Table II shows that the O-H bond length within subsys-
tem A reproduces the CCSD predicted bond length of
0.979 Å and the remaining bonds within subsystem B re-
produce the LDA predicted bond lengths. This indicates
that the potential energy surface produced by projection-
based embedding varies smoothly from CCSD-like inter-
actions for subsystem A and LDA-like interactions for
subsystem B. Interestingly, the C-O bond located at the
boundary between subsystems A and B closely repro-
duces the LDA bond length and is not an interpolation
between the CCSD and LDA bond lengths.
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C1

OH

C2

FIG. 1. Optimized geometry for ethanol using projection-
based CCSD-in-LDA/6-31G. The solid atoms (O and H) are
in subsystem A and the transparent atoms are in subsystem
B.

TABLE II. Selected bond lengths and angles for ethanol (pic-
tured in Fig.1) optimized at different levels of theory. Bond
lengths are reported in units of Angstroms and angles are
reported in units of degrees.

Method r(O-H) ∠C1OH r(C1-C2) r(C1-O)
LDA/6-31G 0.988 110.4 1.503 1.439
CCSD-in-LDA/6-31G 0.979 110.7 1.506 1.435
CCSD/6-31G 0.979 110.6 1.532 1.475

(a) (b)

O1

N1

O2

N2N3

N4

N5

C1

C2C3

FIG. 2. (a) The optimized geometry for the cobalt-based
organometallic complex performed with projection-based
CCSD-in-LDAX/def2-TZVPP:def2-SVP with AO truncation.
The solid atoms (Co, N1, N2, N3, N4, N5, and C1) are in-
cluded in subsystem A and the transparent atoms are included
in subsystem B. (b) The LDAX/def2-TZVPP:def2-SVP op-
timized geometry (transparent) and the projection-based
CCSD-in-LDAX/def2-TZVPP:def2-SVP with AO truncation
optimized geometry (solid).

2. Cobalt-based Organometallic Complex

As a demonstration of embedding gradients with
AO truncation, the geometry of the cobalt-based
organometallic complex, shown in Fig. 2, is optimized.
Fig. 2a shows the CCSD-in-LDAX/def2-TZVPP:def2-
SVP optimized structure of the cobalt complex where
the solid atoms are included in subsystem A and
the transparent atoms are included in subsystem B.
In Fig. 2b the optimized structures evaluated at the
CCSD-in-LDAX/def2-TZVPP:def2-SVP (solid) and the
LDAX/def2-TZVPP:def2-SVP (transparent) levels of
theory are overlaid. While only modest differences are

TABLE III. Selected bond lengths for the organometallic com-
plex pictured in Fig.2 optimized at different levels of theory
and their absolute difference (|∆|). Bond lengths are reported
in units of angstroms.

LDAX CCSD-in-LDAX |∆|

S
u
b

A

r(Co-N1) 1.836 1.846 0.010
r(Co-N2) 1.893 1.883 0.010
r(Co-N3) 1.932 1.951 0.019
r(Co-N4) 1.900 1.926 0.026
r(Co-N5) 1.978 2.026 0.048

B
o
u
n
d
a
ry

r(N5-O1) 1.317 1.355 0.038
r(N5-O2) 1.262 1.301 0.039
r(C1-N5) 1.131 1.150 0.019
r(N2-C2) 1.430 1.458 0.028
r(N3-C3) 1.428 1.458 0.030

S
u
b

B

r(O1-H) 1.025 1.030 0.005

seen in the overall structure, Table III shows that the
optimized bond lengths do change between the two lev-
els of theory, both for the region within subsystem A and
at the subsystem boundary. This indicates that the WF
method is capable of relaxing the atoms in subsystem
A even when they are strongly coordinated with subsys-
tem B. It is also seen that the bond lengths across the
boundary of subsystems A and B also differ from the
LDAX geometry since the bonds in question experience
the effects of both the WF and KS methods. Finally, if
a bond length associated with atoms in subsystem B is
considered, such as the O1-H bond, it is found to closely
match the LDAX predicted bond length.

C. Malondialdehyde: Minimum Energy Reaction Pathway

The minimum energy reaction pathway for the pro-
ton transfer in malondialdehyde is determined using the
NEB method. Fig. 3 shows that with minimal embedding
(Fig. 3a) the CCSD-in-LDA/def2-aSVP reaction barrier,
shown in Fig. 3b, is 4.85 kcal/mol which is within 1.5
kcal/mol of the CCSD/def2-aSVP reference reaction bar-
rier of 6.12 kcal/mol. This is a vast improvement over
the LDA/def2-aSVP result, which predicts an essentially
barrierless reaction. In addition to correctly predicting
the reaction barrier, Fig. 3c shows that the CCSD-in-
LDA/def2-aSVP reaction pathway lies precisely on top
of the CCSD/def2-aSVP pathway with only a small de-
viation in the basins. In contrast, Fig. 3d shows that the
LDA/def2-aSVP reaction pathway and potential energy
surface reveal errors in the location of the reactant and
product basins, with the hydrogen-bond length vastly un-
derestimated. This is consistent with the tendency of
LDA to over stabilize hydrogen bonds.
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CCSD/def2-asvp

CCSD-in-LDA/def2-asvp

LDA/def2-asvp

CCSD/def2-asvp

CCSD-in-LDA/def2-asvp

6

9

12

15

LDA/def2-asvp

6

9

12

15

FIG. 3. (a) The ground state geometry of malondialdehyde evaluated at the CCSD-in-LDA/def2-aSVP level of theory. The
solid atoms are included in subsystem A and the transparent atoms are included in subsystem B. (b) The reaction barrier
heights for the minimum energy reaction pathways for LDA/def2-aSVP, CCSD-in-LDA/def2-aSVP and CCSD/def2-aSVP. (c),
(d) Also shown are the minimum energy reaction pathways of the proton transfer in malondialdehyde as a function of the
distance of the proton from the oxygen atoms, O1 on the x-axis, O2 on the y-axis for the CCSD-in-LDA/def2-aSVP and
CCSD/def2-aSVP levels of theory, (c), and for the LDA/def2-aSVP level of theory, (d).

D. Cobalt-based Organometallic Complex: Minimum
Energy Reaction Pathway

The minimum energy reaction pathway for the in-
tramolecular proton transfer in a cobalt diimine-dioxime
catalyst (Fig. 4a) is now investigated. Previously, the
reaction pathway for the transfer of the [-NH] to form
a cobalt hydride had been investigated using geometries
obtained using DFT.20 Fig. 4b shows the energy profile
for this reaction determined by various levels of theory.
We observe that the reaction pathway determined by the
NEB optimized at the PBE0/cc-pVDZ level of theory
(purple curve) predicts a barrier height of 5.45 kcal/mol.
However, when single-point PNO-LCCSD-in-PBE0/cc-
pVDZ embedding energy calculations are run on the
PBE0 optimized geometries (blue curve), the barrier
height is lowered to 3.35 kcal/mol and the position of
the transition state is shifted towards the reactant. The
NEB optimized at the CCSD-in-PBE0/cc-pVDZ embed-
ding level of theory (red curve) shows an even lower bar-
rier height of 2.61 kcal/mol and predicts a substantially
different transition state geometry (Fig. 4c) than the
DFT result. The difference between the transition states
predicted by the PBE0/cc-pVDZ and PNO-LCCSD-in-
PBE0/cc-pVDZ levels of theory is clearly seen in Fig. 4d,
which shows the projection of the NEB onto the two di-
mensions of the Co-H and N-H bonds and with the posi-
tion of the transition state geometry indicated with stars.
This result clearly shows the large degree to which com-

monly employed DFT transition state geometries can dif-
fer from the CCSD-quality result that is obtained using
projection-based embedding.

V. CONCLUSIONS

We present the derivation and numerical demonstra-
tion of analytical nuclear gradients for projection-based
embedding both with and without AO truncation. A
key aspect of the gradient theory is that the WF con-
tributions can be evaluated using existing WF gradi-
ent implementations without the need for modification
or additional programming, thereby allowing projection-
based WF-in-DFT embedding gradients to be easily gen-
eralized to any combination of WF and KS-DFT meth-
ods. It is demonstrated that projection-based embed-
ding gradients produce accurate geometries for a variety
of benchmark systems, including for bond-lengths that
span the interface between subsystems. Furthermore, in
applications to both malondialdehyde and a transition-
metal catalyst, WF-in-DFT minimum energy pathways
obtained via the NEB method reveal large errors in DFT-
computed transition-state energies and geometries. Fi-
nally, we note that the Lagrangian framework presented
here can be used to derive other analytical gradients of
the projection-based WF-in-DFT energy with respect to
quantities such as electric and magnetic fields.
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PBE0

PNO-LCCSD-in-PBE0

PBE0

PNO-LCCSD-in-PBE0

PNO-LCCSD

PNO-LCCSD-in-PBE0 (PBE0 geom)

PBE0 Transition State

PNO-LCCSD-in-PBE0 
Transition State

Reactants

Products

FIG. 4. All calculations used the cc-pVDZ basis set. (a) The optimized geometry for a cobalt-based organometallic complex
calculated at the CCSD-in-PBE0 level of theory with AO truncation. The solid atoms are included in subsystem A while
the transparent atoms are in subsystem B. (b) The minimum energy reaction pathway for PBE0, the reaction pathway for
PNO-LCCSD-in-PBE0 using the PBE0 geometries, the reaction pathway for PNO-LCCSD-in-PBE0 using CCSD-in-PBE0
geometries, and the reaction pathway for PNO-LCCSD using the CCSD-in-PBE0 geometries. The x-axis is a coordinate
constructed by taking a normalized mass-weighted RMSD of all images along the pathway with respect to the respective
reactant and product. In comparing the purple and blue curves versus the orange and red curves, note that the transition state
position in these normalized coordinates is affected by changes in the geometries of the reactant and product. (c) A zoomed-in
picture of the transition state geometries predicted by PBE0 (opaque atoms) and PNO-LCCSD-in-PBE0 (transparent atoms)
levels of theory. The proton placement between the nitrogen and cobalt center at the PNO-LCCSD-in-PBE0 level of theory is
highlighted in red. (d) The minimum energy reaction pathways of the proton transfer for PNO-LCCSD-in-PBE0 and PBE0
as a function of the distance of the proton from the cobalt atom on the x-axis, and the nitrogen atom on the y-axis. The
placement of the transition states are highlighted for each level of theory.
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VI. SUPPORTING INFORMATION

All geometries used in all tables and figures are avail-
able for download.

Appendix A: Pipek-Mezey Localization

Equation 14 from the main text

(
a
[
zloc
])
pi

=
∑
µ

Cµ,p

(∑
k>l

zloc
kl

∂rkl
∂Cµ,q

)
=
∑
k>l

Bpi,klzloc
kl

(A1)

corresponds to the derivative of the localization condi-
tions, Eq. 7, with respect to C, where

Bpi,kl =
∑
C

[(
2SCpkδki − 2SCplδli

)
SCkl

+
(
SCkk − SCll

)(
SCplδki + SCpkδli

)]
.

(A2)
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Next, the overlap derivative contribution from the local-
ization conditions from Eq. 34 is∑
i>j

∂rij
∂Sµν

zloc
ij =

∑
i>j

zloc
ij (1− Pij)

∑
C

[
2Lµ,iLν,iS

C
ij

+ SCii (Lµ,iLν,j + Lµ,jLν,i)
]∣∣∣
µ∈C

,

(A3)

where Pij permutes the indices i and j, and µ is restricted
to atomic orbitals on atom C.

Appendix B: Orbital Derivatives of Projection-based
WF-in-DFT Embedding Energy

This appendix provides additional details for the terms
in Eqs. 13 and 15 of the main text. The derivative of
the projection-based WF-in-DFT embedding energy and
the WF constraints with respect to the MO coefficients
shown in Eq. 13 is

Epq =
∑
µ

Cµ,p

(
∂EWF-in-DFT

[
Ψ̃A;γA,γB

]
∂Cµ,q

+
∂

∂Cµ,q

∑
s

ΛWF,A
s cs

)

=
∑
µ

Cµ,p

(
∂EDFT

[
γA + γB

]
∂Cµ,q

−
∂EDFT

[
γA
]

∂Cµ,q
+ tr

∂
(
d̃A

rel − γA
)

∂Cµ,q
vemb

+ tr

[(
d̃A

rel − γA
)∂vemb

∂Cµ,q

]

+ µtr

[
∂d̃A

rel

∂Cµ,q
PB

]
+ µtr

[
d̃A

rel

∂PB

∂Cµ,q

])
,

(B1)

where the partial derivative of the WF constraints causes the appearance of the WF relaxed density, d̃A
rel, in the last

four terms on the RHS of Eq. B1. Equation B1 simplifies to

Epq = 4
(
F
[
γA + γB

])
pq

∣∣∣
q∈occ

− 4
(
F
[
γA
])
pq

∣∣∣
q∈A
− 4(vemb)pq

∣∣∣
q∈A

+ 4
(
M
[
d̃A

rel − γA
])

pq
, (B2)

where q ∈ occ indicates that the index q is restricted to LMOs, q ∈ A indicates that q is restricted to LMOs in
subsystem A, and F is the KS Fock matrix evaluated with the bracketed density. The last term on the RHS of Eq. B2

(M[γ])pq =
1

4

∑
µ

Cµ,p

(
tr

[
γ
∂vemb

[
γA,γB

]
∂Cµ,q

]
+ µtr

[
γ
∂PB

∂Cµ,q

])
, (B3)

simplifies to

(M[γ])pq =
∑
µν

Cµ,p
∑
λσ

γλσ

(
(µν|λσ)− 1

2xf (µλ|νσ)
)
Lν,q

∣∣∣
q∈B

+ µ
(
C†P[γ]L

)
pq

∣∣∣
q∈B

+
(
ṽxc

[
γA + γB,γ

])
pq

∣∣∣
q∈occ

+
(
ṽxc

[
γA,γ

])
pq

∣∣∣
q∈A

(B4)

where

P[γ] = SγS. (B5)

In the current study, we employ both LDA and GGA exchange-correlation functionals; for the special case of LDA,
the term ṽxc

[
γA + γB,γ

]
assumes the form

(
ṽxc

[
γA + γB,γ

])
pq

=
∑
mn

(
pq|fxc

[
γA + γB

]
|mn

)
γmn, (B6)

where fxc is the XC kernel which is defined as the second derivative of the XC functional with respect to density.
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The derivative of the Brillioun conditions in Eq. 15 can be expanded as follows.

(D[z])pq =
∑
ak

Dpq,akzak

=
∑
ak

zak

[(
F
[
γA + γB

])
pk
δaq +

(
F
[
γA + γB

])
ap
δkq + 2

∑
l

δql

(
2(ak|pl)− 1

2xf (ap|kl)− 1
2xf (al|kp)

)
+
∑
µλσ

Cµ,pCλ,a
∂
(
vxc

[
γA + γB

])
λσ

∂Cµ,q
Lσ,k

]

=
(
F
[
γA + γB

]
z
)
pq

∣∣∣
q∈occ

+
(
F
[
γA + γB

]
z†
)
pq

∣∣∣
q∈vir

+ 2(V[z̄])pq

∣∣∣
q∈occ

,

(B7)

where z̄ = z + z† and V[z̄] is defined as

(V[z̄])pq

∣∣∣
q∈occ

=
∑
mn

z̄mn

(
(mn|pq)− 1

2xf (mp|nq)
)∣∣∣
q∈occ

+
(
ṽxc

[
γA + γB, z̄

])
pq

∣∣∣
q∈occ

. (B8)

Appendix C: Atomic Orbital Truncation

Projection-based WF-in-DFT embedding reduces the
cost of the WF calculation on subsystem A by reducing
the number of LMOs that are correlated at the WF level,
but thus far leaves the virtual space untouched. How-
ever, the scaling of most WF methods is dominated by
the number of virtual MOs (e.g. O(v4) for CCSD). One
strategy has been to employ local correlation WF meth-
ods such as PNO-LMP294 and PNO-LCCSD95,96 to de-
scribe subsystem A since these methods are able to lever-
age the reduced number of LMOs to significantly lower
the number of occupied-virtual orbital pairs that need to
be included, resulting in a cheap and accurate WF cal-
culation. However, a real advantage of projection-based
embedding hinges on being able to use any WF method
to describe subsystem A. Therefore, having a more gen-
eral approach to reduce the cost of the WF calculation
on the subsystem A is desirable.

The AO truncation scheme devised by Bennie et al.18

provides a simple way to significantly reduce the cost of
the WF calculation by reducing the size of the basis used
to describe subsystem A. The AOs that are discarded
are selected through a single density threshold parame-
ter: if the net Mulliken population, computed using the
subsystem A density, of an AO is less than the speci-
fied threshold, it is removed from the basis set. This
scheme has shown to greatly speedup up WF-in-DFT
calculations at a small cost in accuracy in total and rela-
tive energies.18 Additionally, it has the nice feature that
given a fixed subsystem A, the size of the truncated sub-
system A basis scales asymptotically as the size of the
environment grows. This basis set modification does not
cause any complications in the evaluation of the subsys-
tem A WF gradient so existing implementations can be
used without any modifications. The energy expression
for a projection-based WF-in-DFT calculation with AO
truncation using the so-called type-in-type correction18

is

Etrun
WF-in-DFT

[
Ψ̃A,trun; γ̄A,trun;γA,γB

]
= EWF

[
Ψ̃A,trun

]
− Etrun

DFT

[
γ̄A,trun

]
+ EDFT

[
γA + γB

]
+ tr

[(
d̃A,trun − γ̄A,trun

)
vtrun

emb

[
γA,γB

]]
+ tr

[(
d̃A,trun − γ̄A,trun

)
PB,trun

]
(C1)

where Ψ̃A,trun is the subsystem A WF in the truncated
basis, γ̄A,trun is the KS subsystem A one-particle den-
sity in the truncated basis, γA and γB are the KS sub-
system A and B one-particle densities in the full ba-
sis respectively, d̃A,trun is the subsystem A one-particle
reduced density matrix that corresponds to Ψ̃A,trun,
vtrun

emb

[
γA,γB

]
is the embedding potential in the trun-

cated basis which is evaluated by

vtrun
emb

[
γA,γB

]
= P†tvemb

[
γA,γB

]
Pt, (C2)

and PB,trun is the projection operator in the truncated
basis which is evaluated by

PB,trun = P†tP
BPt. (C3)

Here, Pt is the rectangular matrix that maps the full
basis to the truncated basis which is created by starting
with identity matrix and deleting columns corresponding
to thrown away AO functions. We note that the even
though the notation for Eq. C1 is different from the one
used in Ref. 18 the approach is identical.
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Appendix D: Projection-based WF-in-DFT Gradient Theory
with AO Truncation

1. Total Energy Lagrangian

We now derive the total energy Lagrangian for for
projection-based WF-in-DFT embedding with AO trun-
cation. The WF-in-DFT AO truncation Lagrangian is

L =E
trun
WF-in-DFT

[
Ψ̃A,trun; γ̄A,trun;γA,γB

]
+
∑
s

ΛWF,A
s cs

−
∑
ij∈Ā

ε̄Aij
[
C̄A†SC̄A − 1

]
ij

+
∑
pq

xpq
[
C†SC− 1

]
pq

+
∑
i>j

zloc
ij rij

+
∑
ai

zai
(
F
[
γA + γB

])
ai

,

(D1)

where the bar superscript refers to subsystem A quan-
tities optimized by the KS functional in the truncated
basis. The constraints that appear in Eq. D1 are all the
same as those that appear in Eq. 6 from the main text,
except for the third term on the RHS of Eq. D1. This
term constrains the MOs, C̄A, to be orthogonal.

a. Minimizing the Lagrangian with respect to the
variational parameters of the WF method – Ψ̃A,trun.

Minimizing the WF-in-DFT AO truncation La-
grangian with respect to Ψ̃A,trun simplifies to the min-
imization of the subsystem A WF energy and the WF
constraints (as explained in section II D), which corre-
sponds to the conventional WF Lagrangian used to derive
WF gradient theories, albeit in the truncated basis.

b. Minimizing the Lagrangian with respect to the MO
coefficients, C̄A.

The minimization of the Lagrangian with respect to
the optimized KS MO coefficients in the truncated basis,
C̄A, results in the SCF equations using the embedded
Fock matrix.

∑
µ

C̄A
µ,i

(
∂Etrun

DFT[γ̄A,trun]

∂C̄Aµ,j
+
∂tr
[
γ̄A,trunvtrun

emb

[
γA,γB

]]
∂C̄Aµ,j

+ µ
∂tr
[
γ̄A,trunPB,trun

]
∂C̄Aµ,j

)
=

=
∑
µ

C̄A
µ,i

∑
kl∈Ā

ε̄Akl
∂S̄Akl
∂C̄A

µ,j

(D2)

∑
µν

C̄Aµ,i

((
F
[
γ̄A,trun

])
µν

+
(
vtrun

emb

[
γA,γB

])
µν

+ µ
[
PB,trun

]
µν

)
C̄Aν,j =

1

2
ε̄Aij

∣∣∣
ij∈A

(D3)

(
FA
[
γ̄A,trun

])
ij

∣∣∣
ij∈A

=
1

2
ε̄Aij

∣∣∣
ij∈A

(D4)

Therefore, the Lagrange multipliers 1
2 ε̄

A are simply the
MO eigen energies of the KS optimized subsystem A MOs
in the truncated basis.

c. Minimize the Lagrangian with respect to the MO
coefficients, C.

The minimization of the Lagrangian with respect to
the KS MO coefficients in the full basis, C, is∑

µ

Cµ,p
∂L
∂Cµ,q

= Epq +
(
a
[
zloc
])
pi

+ (D[z])pq + 2xpq = 0.

(D5)

where only the matrix E differs from the ones outlined
in Eqns. 13-16.

Epq = 4
(
F
[
γA + γB

])
pq

∣∣∣
q∈occ

+ 4
(
M
[
Pt

(
d̃A,trun

rel − γ̄A,trun
)
P†t

])
pq

(D6)

With the updated E matrix, the Lagrangian multipliers
are solved in the same way as outlined for the WF-in-
DFT Lagrangian multipliers.

d. Gradient of the Total Energy

Once the Lagrangian is minimized with respect to all
variational parameters, the gradient of the energy with
respect to nuclear coordinate, q, takes the form

E
trun,(q)
WF-in-DFT = Etrun,q

WF

[
Ψ̃A,trun

]
− Etrun,q

DFT

[
γ̄A,trun

]
+ tr

[
dah

(q)
]

+ tr
[
XS(q)

]
+

1

2

∑
µνλσ

Dµνλσ(µν|λσ)(q)

+ E(q)
xc

[
γA + γB

]
+ tr

[
dc

(
v(q)

xc

[
γA + γB

]
− v(q)

xc

[
γA
])]

,

(D7)

where the first two terms on the RHS of Eq. D7, Etrun,q
WF

and Etrun,q
DFT , are the total derivative of the truncated sub-

system A WF and KS energy respectively, minus the em-

bedding contribution, v
trun,(q)
emb . These two terms are cal-

culated using existing gradient implementations, whereas
the embedding contribution has been folded into the re-
maining terms. The effective one-particle densities da,
db and dc are

da = γA + γB + CzC†, (D8)
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db = γA + γB + 2CzC† + 2dc, (D9)

and

dc = Pt

(
d̃A,trun

rel − γ̄A,trun
)
P†t . (D10)

The effective two-particle density D is

Dµνλσ =
(
γA + γB

)
µν

(db)λσ − 2γA
µν(dc)λσ

− 1

2
xf

((
γA + γB

)
µλ

(db)νσ − 2γA
µλ(dc)νσ

)
.

(D11)

The matrix X is

X = Xloc − 1

2
L
(
E + 2V[z̄]

)
L†

− 1

2

(
Cv(zF)L† +

(
Cv(zF)L†

)†)
+ µ

(
dcSγ

B + γBSdc

)
,

(D12)

where(
Xloc

)
µν

= −1

2

(
La
[
zloc
]
L†
)
µν

+
∑
i>j

∂rij
∂Sµν

zloc
ij . (D13)
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64M. Schütz, H.-J. Werner, R. Lindh, and F. R. Manby, The Jour-

nal of Chemical Physics 121, 737 (2004).
65B. Hégely, P. R. Nagy, G. G. Ferenczy, and M. Kállay, The
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