293 research outputs found

    Characterization, renovation, and utilization of water from slurry transport systems

    Get PDF
    The transportation of a number of commodities as water slurries in pipelines offers a number of advantages which will make this method of transport more popular in coming years. Among the formeost of these advantages are high reliability, low operating costs, minimum environmental disruption, and ability to operate with nonpetroleum energy resources. Although coal is the most frequently mentioned material that is a candidate for slurry transport, other commodities including minerals, wood chips, and even solid refuse may be moved in this manner. Water used as a slurry transport medium must be properly characterized, renovated, and used in order to make slurry transport environmentally and economically acceptable.Project # B-145-MO Agreement # 14-34-0001-121

    Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Get PDF
    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydro-dynamically controlled gas density transition injection methods

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    Hot spots and dark current in advanced plasma wakefield accelerators

    Get PDF
    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed

    All-optical density downramp injection in electron-driven plasma wakefield accelerators

    Get PDF
    Injection of well-defined, high-quality electron populations into plasma waves is a key challenge of plasma wakefield accelerators. Here, we report on the first experimental demonstration of plasma density downramp injection in an electron-driven plasma wakefield accelerator, which can be controlled and tuned in all-optical fashion by mJ-level laser pulses. The laser pulse is directed across the path of the plasma wave before its arrival, where it generates a local plasma density spike in addition to the background plasma by tunnelling ionization of a high ionization threshold gas component. This density spike distorts the plasma wave during the density downramp, causing plasma electrons to be injected into the plasma wave. By tuning the laser pulse energy and shape, highly flexible plasma density spike profiles can be designed, enabling dark current free, versatile production of high-quality electron beams. This in turn permits creation of unique injected beam configurations such as counter-oscillating twin beamlets

    Generation and acceleration of electron bunches from a plasma photocathode

    Get PDF
    Plasma waves generated in the wake of intense, relativistic laser1,2 or particle beams3,4 can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected5,6 or captured from the background plasma7,8. Here we demonstrate optically triggered injection9–11 and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical11 density down-ramp injection12–16 and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness17. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams

    Metabotropic glutamate receptor 1 (mGluR1) and 5 (mGluR5) regulate late phases of LTP and LTD in the hippocampal CA1 region in vitro

    Get PDF
    The group I metabotropic glutamate receptors, mGluR1 and mGluR5, exhibit differences in their regulation of synaptic plasticity, suggesting that these receptors may subserve separate functional roles in information storage. In addition, although effects in vivo are consistently described, conflicting reports of the involvement of mGluRs in hippocampal synaptic plasticity in vitro exist. We therefore addressed the involvement of mGluR1 and mGluR5 in long-term potentiation (LTP) and long-term depression (LTD) in the hippocampal CA1 region of adult male rats in vitro. The mGluR1 antagonist (S)-(+)-α-amino-4-carboxy-2-methylbenzene-acetic acid (LY367385) impaired both induction and late phases of both LTP and LTD, when applied before high-frequency tetanization (HFT; 100 Hz) or low-frequency stimulation (LFS; 1 Hz), respectively. Application after either HFT or LFS had no effect. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), when given before HFT, inhibited both the induction and late phases of LTP. When given after HFT, late LTP was inhibited. MPEP, given prior to LFS, impaired LTD induction, although stable LTD was still expressed. Application after LFS significantly impaired late phases of LTD. Activation of protein synthesis may comprise a key mechanism underlying the group I mGluR contribution to synaptic plasticity. The mGluR5 agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) converted short-term depression into LTD. Effects were prevented by application of the protein synthesis inhibitor anisomycin, suggesting that protein synthesis is triggered by group I mGluR activation to enable persistency of synaptic plasticity. Taken together, these data support the notion that both mGluR1 and mGluR5 are critically involved in bidirectional synaptic plasticity in the CA1 region and may enable functional differences in information encoding through LTP and LTD

    Plasma-photonic spatiotemporal synchronization of relativistic electron and laser beams

    Get PDF
    Modern particle accelerators and their applications increasingly rely on precisely coordinated interactions of intense charged particle and laser beams. Femtosecond-scale synchronization alongside micrometre-scale spatial precision are essential e.g. for pump-probe experiments, seeding and diagnostics of advanced light sources and for plasma-based accelerators. State-of-the-art temporal or spatial diagnostics typically operate with low-intensity beams to avoid material damage at high intensity. As such, we present a plasma-based approach, which allows measurement of both temporal and spatial overlap of high-intensity beams directly at their interaction point. It exploits amplification of plasma afterglow arising from the passage of an electron beam through a laser-generated plasma filament. The corresponding photon yield carries the spatiotemporal signature of the femtosecond-scale dynamics, yet can be observed as a visible light signal on microsecond-millimetre scales
    • …
    corecore