11 research outputs found

    Functional study of the alelic variants of urate transporters SLC2A9 on the model of Xenopus laevis oocytes.

    Get PDF
    Department of Cell BiologyKatedra buněčné biologieFaculty of SciencePřírodovědecká fakult

    Translocation of outer membrane vesicles from enterohemorrhagic Escherichia coli O157 across the intestinal epithelial barrier

    Get PDF
    Outer membrane vesicles (OMVs) carrying virulence factors of enterohemorrhagic Escherichia coli (EHEC) are assumed to play a role in the pathogenesis of life-threatening hemolytic uremic syndrome (HUS). However, it is unknown if and how OMVs, which are produced in the intestinal lumen, cross the intestinal epithelial barrier (IEB) to reach the renal glomerular endothelium, the major target in HUS. We investigated the ability of EHEC O157 OMVs to translocate across the IEB using a model of polarized Caco-2 cells grown on Transwell inserts and characterized important aspects of this process. Using unlabeled or fluorescently labeled OMVs, tests of the intestinal barrier integrity, inhibitors of endocytosis, cell viability assay, and microscopic techniques, we demonstrated that EHEC O157 OMVs translocated across the IEB. OMV translocation involved both paracellular and transcellular pathways and was significantly increased under simulated inflammatory conditions. In addition, translocation was not dependent on OMV-associated virulence factors and did not affect viability of intestinal epithelial cells. Importantly, translocation of EHEC O157 OMVs was confirmed in human colonoids thereby supporting physiological relevance of OMVs in the pathogenesis of HUS

    Metabolism of uric acid during mammalian evolution

    No full text
    Uric acid is the end product of purine metabolism of humans and some higher primates. In other mammals enzyme urate oxidase is capable to further convert uric acid to allantoin. During evolution of primates several mutations in urate oxidase gene had occured, led the enzyme to decrease its activity or to complete loss of function. What was the initial impetus for the utilization of uric acid and what biochemical traits of uric acid led to a tendency to retain a major of this metabolite production in the bloodstream? Uric acid has antioxidant capabilities and it is scavanger of free radicals. Increased levels of uric acid in blood has an effect on acute and chronic elevations of blood pressure. It is possible that hyperuricemia helped to maintain blood pressure under low-salt dietary conditions of primates during the Miocene. This mechanism probably have allowed to stabilize bipedalism our ancestors. Uric acid has an important role as a neuroprotector. As inhibitor the permeability blood-brain barrier, uric acid limits the infiltration of undesirable substances to the neurons and prevents central nervous system against the formation of inflammatory diseases. Such as neurodegenerative diseases may be caused by reduced serum uric acid levels. Uric acid protects against peroxinitrite damage tissues in the..

    Functional study of the alelic variants of urate transporters SLC2A9 on the model of Xenopus laevis oocytes.

    Get PDF
    Department of Cell BiologyKatedra buněčné biologieFaculty of SciencePřírodovědecká fakult

    The effect of urate transporter polymorphisms on uric acid excretion

    No full text
    Uric acid excretion disorders are the most common cause of primary dysuricemia. The kidneys eliminate two-thirds of uric acid production and the other third is eliminated in the gastrointestinal tract. Renal reabsorption and secretion occur through the polarised epithelial cells in the proximal tubules. Uric acid transporters are expressed on these cell membranes. Reabsorption deficiency leads to hypouricemia and elevated fraction excretion associated with urolithiasis, nephrolithiasis or acute renal injury. Decreased uric acid secretion in the kidneys and small intestine leads to hyperuricemia, which develops into gout in 10% of individuals. Genome wide association studies detected a strong effect of SLC22A12 (URAT1), SLC2A9 (GLUT9) reabsorbing transporters and ABCG2 (ABCG2) secreting transporter on uric acid serum concentration variability. This thesis aimed to map out urate transporter allelic variants in a cohort of primary dysuricemia patients and identification of the variants causing defective uric acid excretion. Six non-synonymous variants were described in SLC22A12 (URAT1) and SLC2A9 (GLUT9) genes in hypouricemic individuals, which had not been identified previously in any population studies. Significant decreases in uric acid transport have been demonstrated experimentally in vitro,..

    The effect of urate transporter polymorphisms on uric acid excretion

    No full text
    Uric acid excretion disorders are the most common cause of primary dysuricemia. The kidneys eliminate two-thirds of uric acid production and the other third is eliminated in the gastrointestinal tract. Renal reabsorption and secretion occur through the polarised epithelial cells in the proximal tubules. Uric acid transporters are expressed on these cell membranes. Reabsorption deficiency leads to hypouricemia and elevated fraction excretion associated with urolithiasis, nephrolithiasis or acute renal injury. Decreased uric acid secretion in the kidneys and small intestine leads to hyperuricemia, which develops into gout in 10% of individuals. Genome wide association studies detected a strong effect of SLC22A12 (URAT1), SLC2A9 (GLUT9) reabsorbing transporters and ABCG2 (ABCG2) secreting transporter on uric acid serum concentration variability. This thesis aimed to map out urate transporter allelic variants in a cohort of primary dysuricemia patients and identification of the variants causing defective uric acid excretion. Six non-synonymous variants were described in SLC22A12 (URAT1) and SLC2A9 (GLUT9) genes in hypouricemic individuals, which had not been identified previously in any population studies. Significant decreases in uric acid transport have been demonstrated experimentally in vitro,..

    Metabolism of uric acid during mammalian evolution

    No full text
    Uric acid is the end product of purine metabolism of humans and some higher primates. In other mammals enzyme urate oxidase is capable to further convert uric acid to allantoin. During evolution of primates several mutations in urate oxidase gene had occured, led the enzyme to decrease its activity or to complete loss of function. What was the initial impetus for the utilization of uric acid and what biochemical traits of uric acid led to a tendency to retain a major of this metabolite production in the bloodstream? Uric acid has antioxidant capabilities and it is scavanger of free radicals. Increased levels of uric acid in blood has an effect on acute and chronic elevations of blood pressure. It is possible that hyperuricemia helped to maintain blood pressure under low-salt dietary conditions of primates during the Miocene. This mechanism probably have allowed to stabilize bipedalism our ancestors. Uric acid has an important role as a neuroprotector. As inhibitor the permeability blood-brain barrier, uric acid limits the infiltration of undesirable substances to the neurons and prevents central nervous system against the formation of inflammatory diseases. Such as neurodegenerative diseases may be caused by reduced serum uric acid levels. Uric acid protects against peroxinitrite damage tissues in the..

    The effect of urate transporter polymorphisms on uric acid excretion

    No full text
    Uric acid excretion disorders are the most common cause of primary dysuricemia. The kidneys eliminate two-thirds of uric acid production and the other third is eliminated in the gastrointestinal tract. Renal reabsorption and secretion occur through the polarised epithelial cells in the proximal tubules. Uric acid transporters are expressed on these cell membranes. Reabsorption deficiency leads to hypouricemia and elevated fraction excretion associated with urolithiasis, nephrolithiasis or acute renal injury. Decreased uric acid secretion in the kidneys and small intestine leads to hyperuricemia, which develops into gout in 10% of individuals. Genome wide association studies detected a strong effect of SLC22A12 (URAT1), SLC2A9 (GLUT9) reabsorbing transporters and ABCG2 (ABCG2) secreting transporter on uric acid serum concentration variability. This thesis aimed to map out urate transporter allelic variants in a cohort of primary dysuricemia patients and identification of the variants causing defective uric acid excretion. Six non-synonymous variants were described in SLC22A12 (URAT1) and SLC2A9 (GLUT9) genes in hypouricemic individuals, which had not been identified previously in any population studies. Significant decreases in uric acid transport have been demonstrated experimentally in vitro,..

    Functional Characterization of Rare Variants in OAT1/<i>SLC22A6</i> and OAT3/<i>SLC22A8</i> Urate Transporters Identified in a Gout and Hyperuricemia Cohort

    No full text
    The OAT1 (SLC22A6) and OAT3 (SLC22A8) urate transporters are located on the basolateral membrane of the proximal renal tubules, where they ensure the uptake of uric acid from the urine back into the body. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined the coding regions of both genes using PCR amplification and Sanger sequencing. Variants p.P104L (rs11568627) and p.A190T (rs146282438) were identified in the gene for solute carrier family 22 member 6 (SLC22A6) and variants p.R149C (rs45566039), p.V448I (rs11568486) and p.R513Q (rs145474422) in the gene solute carrier family 22 member 8 (SLC22A8). We performed a functional study of these rare non-synonymous variants using the HEK293T cell line. We found that only p.R149C significantly reduced uric acid transport in vitro. Our results could deepen the understanding of uric acid handling in the kidneys and the molecular mechanism of uric acid transport by the OAT family of organic ion transporters

    Functional Characterization of Rare Variants in OAT1/SLC22A6 and OAT3/SLC22A8 Urate Transporters Identified in a Gout and Hyperuricemia Cohort

    No full text
    The OAT1 (SLC22A6) and OAT3 (SLC22A8) urate transporters are located on the basolateral membrane of the proximal renal tubules, where they ensure the uptake of uric acid from the urine back into the body. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined the coding regions of both genes using PCR amplification and Sanger sequencing. Variants p.P104L (rs11568627) and p.A190T (rs146282438) were identified in the gene for solute carrier family 22 member 6 (SLC22A6) and variants p.R149C (rs45566039), p.V448I (rs11568486) and p.R513Q (rs145474422) in the gene solute carrier family 22 member 8 (SLC22A8). We performed a functional study of these rare non-synonymous variants using the HEK293T cell line. We found that only p.R149C significantly reduced uric acid transport in vitro. Our results could deepen the understanding of uric acid handling in the kidneys and the molecular mechanism of uric acid transport by the OAT family of organic ion transporters
    corecore