21,876 research outputs found
Secular Evolution of Hierarchical Planetary Systems
(Abridged) We investigate the dynamical evolution of coplanar hierarchical
two-planet systems where the ratio of the orbital semimajor axes alpha=a_1/a_2
is small. The orbital parameters obtained from a multiple Kepler fit to the
radial velocity variations of a star are best interpreted as Jacobi coordinates
and Jacobi coordinates should be used in any analyses of hierarchical planetary
systems. An approximate theory that can be applied to coplanar hierarchical
two-planet systems with a wide range of masses m_j and orbital eccentricities
e_j is the octupole-level secular perturbation theory (OSPT). The OSPT shows
that if the ratio of the maximum orbital angular momenta, lambda \approx
(m_1/m_2) alpha^{1/2}, for given a_j is approximately equal to a critical value
lambda_{crit}, then libration of the difference in the longitudes of periapse,
w_1-w_2, about either 0 or 180 deg. is almost certain, with possibly large
amplitude variations of both e_j. We establish that the OSPT is highly accurate
for systems with alpha<0.1 and reasonably accurate even for systems with alpha
as large as 1/3, provided that alpha is not too close to a significant
mean-motion commensurability or above the stability boundary. The HD 168443
system is not in a secular resonance and its w_1-w_2 circulates. The HD 12661
system is the first extrasolar planetary system found to have w_1-w_2 librating
about 180 deg. The libration of w_1-w_2 and the large-amplitude variations of
both e_j in the HD 12661 system are consistent with the analytic results on
systems with lambda \approx lambda_{crit}. The HD 12661 system with the best-
fit orbital parameters and sin i = 1 is affected by the close proximity to the
11:2 commensurability, but small changes in the outer orbital period can result
in configurations that are not affected by mean-motion commensurabilities.Comment: 32 pages, including 8 figures; uses AASTeX v5.0; accepted for
publication in Ap
Trade Costs and the Gains from Trade in Crop Agriculture
Forthcoming in the American Journal of Agricultural Economics.geography, grains, trade costs, trade liberalization, Agricultural and Food Policy, Crop Production/Industries, Demand and Price Analysis, International Development, International Relations/Trade, Marketing, Research Methods/ Statistical Methods, Q17, Q54, F18,
Anapole Dark Matter at the LHC
The anapole moment is the only allowed electromagnetic moment for Majorana
fermions. Fermionic dark matter acquiring an anapole can have a standard
thermal history and be consistent with current direct detection experiments. In
this paper, we calculate the collider monojet signatures of anapole dark matter
and show that the current LHC results exclude anapole dark matter with mass
less than 100 GeV, for an anapole coupling that leads to the correct thermal
relic abundance.Comment: 11 pages, 3 figures, v2: version to appear in PR
Complete Tidal Evolution of Pluto-Charon
Both Pluto and its satellite Charon have rotation rates synchronous with
their orbital mean motion. This is the theoretical end point of tidal evolution
where transfer of angular momentum has ceased. Here we follow Pluto's tidal
evolution from an initial state having the current total angular momentum of
the system but with Charon in an eccentric orbit with semimajor axis (where is the radius of Pluto), consistent with its impact origin.
Two tidal models are used, where the tidal dissipation function
1/frequency and constant, where details of the evolution are strongly
model dependent. The inclusion of the gravitational harmonic coefficient
of both bodies in the analysis allows smooth, self consistent
evolution to the dual synchronous state, whereas its omission frustrates
successful evolution in some cases. The zonal harmonic can also be
included, but does not cause a significant effect on the overall evolution. The
ratio of dissipation in Charon to that in Pluto controls the behavior of the
orbital eccentricity, where a judicious choice leads to a nearly constant
eccentricity until the final approach to dual synchronous rotation. The tidal
models are complete in the sense that every nuance of tidal evolution is
realized while conserving total angular momentum - including temporary capture
into spin-orbit resonances as Charon's spin decreases and damped librations
about the same.Comment: 36 pages, including 18 figures; accepted for publication in Icaru
- …
