27 research outputs found

    Crystallization of \u3ci\u3eChlorella\u3c/i\u3e deoxyuridine triphosphatase

    Get PDF
    Deoxyuridine triphosphatase (dUTPase) is a ubiquitous enzyme that has been widely studied owing to its function and evolutionary significance. The gene coding for the dUTPase from the Chlorella alga was codon-optimized and synthesized. The synthetic gene was expressed in Escherichia coli and recombinant core Chlorella dUTPase (chdUTPase) was purified. Crystallization of chdUTPase was performed by the repetitive hanging-drop vapor-diffusion method at 298 K with ammonium sulfate as the precipitant. In the presence of 2\u27-deoxyuridine-5\u27-[(α,ÎČ)-imido]triphosphate and magnesium, the enzyme produced die-shaped hexagonal R3 crystals with unit-cell parameters a = b = 66.9, c = 93.6 A, ÆŽ = 120°. X-ray diffraction data for chdUTPase were collected to 1.6 A resolution. The crystallization of chdUTPase with manganese resulted in very fragile clusters of needles

    Clinical Course of Laryngeal Granuloma Without Surgical Treatment

    Get PDF
    Laryngeal granuloma is a rather common pathological entity, but its therapeutic strategy is still controversial. In general, therapeutic strategy consists of medications such as steroids or tranilast, in addition to vocal hygiene and surgery. Surgical removal is most commonly performed. However, it has recently been reported that recurrence after surgery is high

    Structural insights into the mechanism defining substrate affinity in Arabidopsis thaliana dUTPase: the role of tryptophan 93 in ligand orientation

    Get PDF
    Background: Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) hydrolyzes dUTP to dUMP and pyrophosphate to maintain the cellular thymine-uracil ratio. dUTPase is also a target for cancer chemotherapy. However, the mechanism defining its substrate affinity remains unclear. Sequence comparisons of various dUTPases revealed that Arabidopsis thaliana dUTPase has a unique tryptophan at position 93, which potentially contributes to its degree of substrate affinity. To better understand the roles of tryptophan 93, A. thaliana dUTPase was studied. Results: Enzyme assays showed that A. thaliana dUTPase belongs to a high-affinity group of isozymes, which also includes the enzymes from Escherichia coli and Mycobacterium tuberculosis. Enzymes from Homo sapiens and Saccharomyces cerevisiae are grouped as low-affinity dUTPases. The structure of the homo-trimeric A. thaliana dUTPase showed three active sites, each with a different set of ligand interactions between the amino acids and water molecules. On an α-helix, tryptophan 93 appears to keep serine 89 in place via a water molecule and to specifically direct the ligand. Upon being oriented in the active site, the C-terminal residues close the active site to promote the reaction. Conclusions: In the high-affinity group, the prefixed direction of the serine residues was oriented by a positively charged residue located four amino acids away, while low-affinity enzymes possess small hydrophobic residues at the corresponding sites

    Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae

    Get PDF
    Post-transcriptional upregulation is an effective way to increase the expression of transgenes and thus maximize the yields of target chemicals from metabolically engineered organisms. Refractory elements in the 3â€Č untranslated region (UTR) that increase mRNA half-life might be available. In Saccharomyces cerevisiae, several terminator regions have shown activity in increasing the production of proteins by upstream coding genes; among these terminators the DIT1 terminator has the highest activity. Here, we found in Saccharomyces cerevisiae that two resident trans-acting RNA-binding proteins (Nab6p and Pap1p) enhance the activity of the DIT1 terminator through the cis element GUUCG/U within the 3â€Č-UTR. These two RNA-binding proteins could upregulate a battery of cell-wall–related genes. Mutagenesis of the DIT1 terminator improved its activity by a maximum of 500% of that of the standard PGK1 terminator. Further understanding and improvement of this system will facilitate inexpensive and stable production of complicated organism-derived drugs worldwide

    A Modified Cre-<i>lox</i> Genetic Switch To Dynamically Control Metabolic Flow in <i>Saccharomyces cerevisiae</i>

    No full text
    The control of metabolic flow is a prerequisite for efficient chemical production in transgenic microorganisms. Exogenous genes required for the biosynthesis of target chemicals are expressed under strong promoters, while the endogenous genes of the original metabolic pathway are repressed by disruption or mutation. These genetic manipulations occasionally cause harmful effects to the host. In the lactate-producing yeast <i>Saccharomyces cerevisiae</i>, where endogenous pyruvate decarboxylase (<i>PDC</i>) is disrupted and exogenous lactate dehydrogenase (<i>LDH</i>) is introduced, <i>PDC</i> deletion is extremely detrimental to cell growth but is required for efficient production of lactate. A suitable means to dynamically control the metabolic flow from ethanol fermentation during the growth phase to lactate fermentation during the production phase is needed. Here, we demonstrated that this flow can be controlled by the exclusive expression of <i>PDC</i> and <i>LDH</i> with a Cre-<i>lox</i> genetic switch. This switch was evaluated with a gene cassette that encoded two different fluorescence proteins and enabled changes in genotype and phenotype within 2 and 10 h, respectively. Transgenic yeast harboring this switch and the <i>PDC</i>-<i>LDH</i> cassette showed a specific growth rate (0.45 h<sup>–1</sup>) that was almost the same as that of wild-type (0.47 h<sup>–1</sup>). Upon induction of the genetic switch, the transgenic yeast produced lactate from up to 85.4% of the glucose substrate, while 91.7% of glucose went to ethanol before induction. We thus propose a “metabolic shift” concept that can serve as an alternative means to obtain gene products that are currently difficult to obtain by using conventional methodologies

    Mirror “Base-off” Conformation of Coenzyme B 12

    No full text

    A Modified Cre-<i>lox</i> Genetic Switch To Dynamically Control Metabolic Flow in <i>Saccharomyces cerevisiae</i>

    No full text
    The control of metabolic flow is a prerequisite for efficient chemical production in transgenic microorganisms. Exogenous genes required for the biosynthesis of target chemicals are expressed under strong promoters, while the endogenous genes of the original metabolic pathway are repressed by disruption or mutation. These genetic manipulations occasionally cause harmful effects to the host. In the lactate-producing yeast <i>Saccharomyces cerevisiae</i>, where endogenous pyruvate decarboxylase (<i>PDC</i>) is disrupted and exogenous lactate dehydrogenase (<i>LDH</i>) is introduced, <i>PDC</i> deletion is extremely detrimental to cell growth but is required for efficient production of lactate. A suitable means to dynamically control the metabolic flow from ethanol fermentation during the growth phase to lactate fermentation during the production phase is needed. Here, we demonstrated that this flow can be controlled by the exclusive expression of <i>PDC</i> and <i>LDH</i> with a Cre-<i>lox</i> genetic switch. This switch was evaluated with a gene cassette that encoded two different fluorescence proteins and enabled changes in genotype and phenotype within 2 and 10 h, respectively. Transgenic yeast harboring this switch and the <i>PDC</i>-<i>LDH</i> cassette showed a specific growth rate (0.45 h<sup>–1</sup>) that was almost the same as that of wild-type (0.47 h<sup>–1</sup>). Upon induction of the genetic switch, the transgenic yeast produced lactate from up to 85.4% of the glucose substrate, while 91.7% of glucose went to ethanol before induction. We thus propose a “metabolic shift” concept that can serve as an alternative means to obtain gene products that are currently difficult to obtain by using conventional methodologies

    Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    No full text
    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering

    Novel Pathway for Utilization of Cyclopropanecarboxylate by Rhodococcus rhodochrous

    No full text
    A new strain isolated from soil utilizes cyclopropanecarboxylate as the sole source of carbon and energy and was identified as Rhodococcus rhodochrous (H. Nishihara, Y. Ochi, H. Nakano, M. Ando, and T. Toraya, J. Ferment. Bioeng. 80:400-402, 1995). A novel pathway for the utilization of cyclopropanecarboxylate, a highly strained compound, by this bacterium was investigated. Cyclopropanecarboxylate-dependent reduction of NAD(+) in cell extracts of cyclopropanecarboxylate-grown cells was observed. When intermediates accumulated in vitro in the absence of NAD(+) were trapped as hydroxamic acids by reaction with hydroxylamine, cyclopropanecarboxohydroxamic acid and 3-hydroxybutyrohydroxamic acid were formed. Cyclopropanecarboxyl-coenzyme A (CoA), 3-hydroxybutyryl-CoA, and crotonyl-CoA were oxidized with NAD(+) in cell extracts, whereas methacrylyl-CoA and 3-hydroxyisobutyryl-CoA were not. When both CoA and ATP were added, organic acids corresponding to the former three CoA thioesters were also oxidized in vitro by NAD(+), while methacrylate, 3-hydroxyisobutyrate, and 2-hydroxybutyrate were not. Therefore, it was concluded that cyclopropanecarboxylate undergoes oxidative degradation through cyclopropanecarboxyl-CoA and 3-hydroxybutyryl-CoA. The enzymes catalyzing formation and ring opening of cyclopropanecarboxyl-CoA were shown to be inducible, while other enzymes involved in the degradation were constitutive
    corecore