25 research outputs found

    On definably proper maps

    Get PDF
    In this paper we work in o-minimal structures with definable Skolem functions and show that a continuous definable map between Hausdorff locally definably compact definable spaces is definably proper if and only if it is proper morphism in the category of definable spaces. We give several other characterizations of definably proper including one involving the existence of limits of definable types. We also prove the basic properties of definably proper maps and the invariance of definably proper in elementary extensions and o-minimal expansions

    Orthogonal Decomposition of Definable Groups

    Get PDF
    Orthogonality in model theory captures the idea of absence of non-trivial interactions between definable sets. We introduce a somewhat opposite notion of cohesiveness, capturing the idea of interaction among all parts of a given definable set. A cohesive set is indecomposable, in the sense that if it is internal to the product of two orthogonal sets, then it is internal to one of the two. We prove that a definable group in an o-minimal structure is a product of cohesive orthogonal subsets. If the group has dimension one, or it is definably simple, then it is itself cohesive. As an application, we show that an abelian group definable in the disjoint union of finitely many o-minimal structures is a quotient, by a discrete normal subgroup, of a direct product of locally definable groups in the single structures

    Tropically convex constraint satisfaction

    Full text link
    A semilinear relation S is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in the intersection of NP and co-NP, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinaer constraints in general into NP intersected co-NP. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure

    Piecewise Linear Valued CSPs Solvable by Linear Programming Relaxation

    No full text
    Valued constraint satisfaction problems (VCSPs) are a large class of combinatorial optimisation problems. The computational complexity of VCSPs depends on the set of allowed cost functions in the input. Recently, the computational complexity of all VCSPs for finite sets of cost functions over finite domains has been classified. Many natural optimisation problems, however, cannot be formulated as VCSPs over a finite domain. We initiate the systematic investigation of the complexity of infinite-domain VCSPs with piecewise linear homogeneous cost functions. Such VCSPs can be solved in polynomial time if the cost functions are improved by fully symmetric fractional operations of all arities. We show this by reducing the problem to a finite-domain VCSP which can be solved using the basic linear program relaxation. It follows that VCSPs for submodular PLH cost functions can be solved in polynomial time; in fact, we show that submodular PLH functions form a maximally tractable class of PLH cost functions
    corecore