5 research outputs found

    Ion Channels Made from a Single Membrane-Spanning DNA Duplex.

    Get PDF
    Because of their hollow interior, transmembrane channels are capable of opening up pathways for ions across lipid membranes of living cells. Here, we demonstrate ion conduction induced by a single DNA duplex that lacks a hollow central channel. Decorated with six porpyrin-tags, our duplex is designed to span lipid membranes. Combining electrophysiology measurements with all-atom molecular dynamics simulations, we elucidate the microscopic conductance pathway. Ions flow at the DNA-lipid interface as the lipid head groups tilt toward the amphiphilic duplex forming a toroidal pore filled with water and ions. Ionic current traces produced by the DNA-lipid channel show well-defined insertion steps, closures, and gating similar to those observed for traditional protein channels or synthetic pores. Ionic conductances obtained through simulations and experiments are in excellent quantitative agreement. The conductance mechanism realized here with the smallest possible DNA-based ion channel offers a route to design a new class of synthetic ion channels with maximum simplicity.K.G. acknowledges funding from the Winton Programme for the Physics of Sustainability, Gates Cambridge, and the Oppenheimer Ph.D. studentship, U.F.K. from an ERC starting Grant Passmembrane 261101 and Oxford Nanopore Technologies, and M.R. from the Early Postdoc Mobility fellowship of the Swiss National Science Foundation. A.A., J.Y., and C.Y.L. acknowledge support form the National Science Foundation under Grants DMR-1507985, PHY-1430124, and EEC-1227034 and the supercomputer time provided through XSEDE Allocation Grant MCA05S028 and the Blue Waters petascale supercomputer system (UIUC). M.W. and S.P.B. acknowledge support from Marie Skłodowska Curie Actions within the Initial Training Networks Translocation Network, project no. 607694 and I.M. from the Marie Skłodowska Curie Fellowship “Nano-DNA” (FP7-PEOPLE-2012-IEF, No 331952).This is the final version of the article. It first appeared from ACS at http://dx.doi.org/10.1021/acs.nanolett.6b02039

    Approaching single DNA molecule detection with an ultrasensitive electrochemical genosensor based on gold nanoparticles and Cobalt-porphyrin DNA conjugates

    No full text
    We describe an ultrasensitive electrochemical genosensor based on gold nanoparticles and cobalt-porphyrin functionalised ssDNA probes. The sensitivity at the attomolar concentration level arises from an increased density of redox labels on the electrode surface compared to sensors without NP modification. The electrode detects as few as 23 DNA molecules, approaching single molecule detection

    Silver or gold? A comparison of nanoparticle modified electrochemical genosensors based on cobalt porphyrin-DNA

    No full text
    We applied a cobalt-porphyrin modified DNA as electrochemical marker, which was attached to nanoparticles, to detect specific DNA sequences. We compare the performance of gold and silver NPs in oligonucleotide sensors to determine if a change in metal will lead to either higher sensitivity or different selectivity, based on the redox behaviour of silver vs. gold. Surprisingly, we find that using either gold or silver NPs yields very similar overall performance. The electrochemical measurements of both types of sensors show the same redox behaviour which is dominated by the cobalt porphyrin, indicating that the electron pathway does not include the NP, but there is direct electron transfer between the porphyrin and the electrode. Both sensors show a linear response in the range of 5 × 10–17 to 1 × 10–16 M; the limit of detection (LOD) is 3.8 × 10–18 M for the AuNP sensor, and 5.0 × 10–18 M for the AgNP sensor, respectively, which corresponds to the detection of about 20–50 DNA molecules in the analyte. Overall, the silver system results in a better DNA economy and using cheaper starting materials for the NPs, thus shows better cost-effectiveness and could be more suitable for the mass-production of highly sensitive DNA sensors
    corecore