67 research outputs found

    Lateral Habenula Gone Awry in Depression: Bridging Cellular Adaptations With Therapeutics.

    Get PDF
    Depression is a highly heterogeneous disease characterized by symptoms spanning from anhedonia and behavioral despair to social withdrawal and learning deficit. Such diversity of behavioral phenotypes suggests that discrete neural circuits may underlie precise aspects of the disease, rendering its treatment an unmet challenge for modern neuroscience. Evidence from humans and animal models indicate that the lateral habenula (LHb), an epithalamic center devoted to processing aversive stimuli, is aberrantly affected during depression. This raises the hypothesis that rescuing maladaptations within this nucleus may be a potential way to, at least partially, treat aspects of mood disorders. In this review article, we will discuss pre-clinical and clinical evidence highlighting the role of LHb and its cellular adaptations in depression. We will then describe interventional approaches aiming to rescue LHb dysfunction and ultimately ameliorate depressive symptoms. Altogether, we aim to merge the mechanistic-, circuit-, and behavioral-level knowledge obtained about LHb maladaptations in depression to build a general framework that might prove valuable for potential therapeutic interventions

    Synchronized network activity in developing rat hippocampus involves regional hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function.

    Get PDF
    The principal form of synchronized network activity in neonatal hippocampus consists of low frequency 'giant depolarizing potentials' (GDPs). Whereas contribution of both GABA and glutamate to their generation has been demonstrated, full understanding of the mechanisms underlying these synchronized activity bursts remains incomplete. A contribution of the h-current, conducted by HCN channels, to GDPs has been a topic of substantial interest. Here we focus on HCN1, the prevalent HCN channel isoform in neonatal hippocampus, and demonstrate an HCN1 spatiotemporal expression pattern in both CA3 principal cells and interneurons that correlates with the developmental profile of GDPs. Abrogation of HCN physiological function in CA3, via the selective I(h)-blocker ZD7288, disrupts GDP generation. Furthermore, ZD7288 specifically abolishes spontaneous bursting of the CA3 pyramidal cells at frequencies typical of GDPs without major influence on interneuronal firing. These findings support a pivotal role for HCN channels expressed by CA3 neurons, and particularly CA3 pyramidal cells, in GDP-related network synchronization

    Synaptic inhibition in the lateral habenula shapes reward anticipation

    Full text link
    The lateral habenula (LHb) supports learning processes enabling the prediction of upcoming rewards. While reward-related stimuli decrease the activity of LHb neurons, whether this anchors on synaptic inhibition to guide reward-driven behaviors remains poorly understood. Here, we combine in vivo two-photon calcium imaging with Pavlovian conditioning in mice and report that anticipatory licking emerges along with decreases in cue-evoked calcium signals in individual LHb neurons. In vivo multiunit recordings and pharmacology reveal that the cue-evoked reduction in LHb neuronal firing relies on GABAA-receptor activation. In parallel, we observe a postsynaptic potentiation of GABAA-receptor-mediated inhibition, but not excitation, onto LHb neurons together with the establishment of anticipatory licking. Finally, strengthening or weakening postsynaptic inhibition with optogenetics and GABAA-receptor manipulations enhances or reduces anticipatory licking, respectively. Hence, synaptic inhibition in the LHb shapes reward anticipation. Keywords: GABA(A) receptors; cue-reward associative behavior; lateral habenula; synaptic inhibition; synaptic plasticit

    Drug-Driven AMPA Receptor Redistribution Mimicked by Selective Dopamine Neuron Stimulation

    Get PDF
    Addictive drugs have in common that they cause surges in dopamine (DA) concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA). Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs) at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine) cause similar changes through their effects on the mesolimbic DA system

    Controlling the persistence of drug-evoked plasticity in the mesolimbic dopamine system

    No full text
    La consommation répétée et prolongée de drogues est à l'origine de l'addiction, une maladie affectant le fonctionnement du cerveau. L'addiction représente un fardeau économique et social pour la société actuelle, se chiffrant en un coût annuel de plusieurs dizaines de milliards d'euros, en Europe. Cette maladie chronique est caractérisée par des états de tolérance, de manque et d'usage compulsif de drogues, malgré des conséquences négatives certaines, ainsi que d'un risque de rechute à long terme. Afin de développer des outils thérapeutiques performants, il est nécessaire de comprendre les processus physiologiques et pathologiques sous-jacents à l'addiction et à sa persistance. Une hypothèse actuelle propose que l'addiction affecte plus particulièrement les mécanismes d'apprentissage et de mémorisation, lors desquels la prise répétée de drogues provoque des changements à long terme dans le cerveau, avec pour résultat une augmentation de la réponse aux drogues, ou à des stimuli directement rattachés aux drogues. Parmi ces changements provoqués par les drogues, la modification de l'activité synaptique semble être un mécanisme clef du stockage de mémoire à long terme, caractéristique de l'addiction

    Synaptic plasticity and addiction: learning mechanisms gone awry

    No full text
    Experience-dependent changes in synaptic strength, or synaptic plasticity, may underlie many learning processes. In the reward circuit for example, synaptic plasticity may serve as a cellular substrate for goal-directed behaviors. Addictive drugs, through a surge of dopamine released from neurons of the ventral tegmental area, induce widespread synaptic adaptations within this neuronal circuit. Such drug-evoked synaptic plasticity may constitute an early cellular mechanism eventually causing compulsive drug-seeking behavior in some drug users. In the present review we will discuss how different classes of addictive drugs cause an increase of dopamine release and describe their effects on synapses within the mesolimbic dopamine system. We will emphasize the early synaptic changes in the ventral tegmental area common to all additive drugs and go on to show how these adaptations may reorganize neuronal circuits, eventually leading to behaviors that define addiction

    mGluR-LTD at Excitatory and Inhibitory Synapses in the Lateral Habenula Tunes Neuronal Output

    Get PDF
    Excitatory and inhibitory transmission onto lateral habenula (LHb) neurons is instrumental for the expression of positive and negative motivational states. However, insights into the molecular mechanisms modulating synaptic transmission and the repercussions for neuronal activity within the LHb remain elusive. Here, we report that, in mice, activation of group I metabotropic glutamate receptors triggers long-term depression at excitatory (eLTD) and inhibitory (iLTD) synapses in the LHb. mGluR-eLTD and iLTD rely on mGluR1 and PKC signaling. However, mGluR-dependent adaptations of excitatory and inhibitory synaptic transmission differ in their expression mechanisms. mGluR-eLTD occurs via an endocannabinoid receptor-dependent decrease in glutamate release. Conversely, mGluR-iLTD occurs postsynaptically through PKC-dependent reduction of β2-containing GABAA-R function. Finally, mGluR-dependent plasticity of excitation or inhibition decides the direction of neuronal firing, providing a synaptic mechanism to bidirectionally control LHb output. We propose mGluR-LTD as a cellular substrate that underlies LHb-dependent encoding of opposing motivational states

    Reward and aversion encoding in the lateral habenula for innate and learned behaviours

    No full text
    International audienceThroughout life, individuals experience a vast array of positive and aversive events that trigger adaptive behavioural responses. These events are often unpredicted and engage actions that are likely anchored on innate behavioural programs expressed by each individual member of virtually all animal species. In a second step, environmental cues, that are initially neutral, acquire value through the association with external sensory stimuli, and become instrumental to predict upcoming positive or negative events. This process ultimately prompts learned goal-directed actions allowing the pursuit of rewarding experience or the avoidance of a danger. Both innate and learned behavioural programs are evolutionarily conserved and fundamental for survival. Among the brain structures participating in the encoding of positive/negative stimuli and contributing to innate and learned behaviours is the epithalamic lateral habenula (LHb). The LHb provides top-down control of monoaminergic systems, responds to unexpected appetitive/aversive stimuli as well as external cues that predict the upcoming rewards or punishments. Accordingly, the LHb controls a number of behaviours that are innate (originating from unpredicted stimuli), and learned (stemming from predictive cues). In this review, we will discuss the progresses that rodent’s experimental work made in identifying how LHb activity governs these vital processes, and we will provide a view on how these findings integrate within a complex circuit connectivity

    Mechanisms of synaptic depression triggered by metabotropic glutamate receptors

    No full text
    Glutamate, by activation of metabotropic receptors (mGluRs), can lead to a reduction of synaptic efficacy at many synapses. These forms of synaptic plasticity are referred to as long-term depression (mGluR-LTD). We will distinguish between mGluR-LTD induced by pre- or postsynaptic receptors and mGluR-LTD induced by the locus of the expression mechanism of the synaptic depression. We will also review recent evidence that mGluR-mediated responses themselves are subject to depression, which may constitute a form of metaplasticity
    corecore