24 research outputs found

    Isolamento, cultivo e caracterização de células-tronco CD133+ de glioblastoma humano

    Get PDF
    OBJECTIVE: To establish the method of isolation and culture of human glioblastoma neurospheres, and the purification of their stem cells, followed by the process of obtaining tumor subspheres, immunophenotypically characterizing this clonogenic set. METHODS: Through the processing of glioblastoma samples (n=3), the following strategy of action was adopted: (i) establish primary culture of glioblastoma; (ii) isolation and culture of tumor neurospheres; (iii) purify cells that initiate tumors (CD133+) by magnetic separation system (MACS); (iv) obtain tumor subspheres; (v) study the expression of the markers nestin, CD133, and GFAP. RESULTS: The study successfully described the process of isolation and culture of glioblastoma subspheres, which consist of a number of clonogenic cells immunophenotypically characterized as neural, which are able to initiate tumor formation. CONCLUSION: These findings may contribute to a better understanding of the process of gliomagenesis.OBJETIVO: Estabelecer o método de isolamento e cultivo das neuroesferas de glioblastoma humano, bem como purificação de suas células-tronco, seguido do processo de obtenção de subesferas tumorais, caracterizando imunofenotipicamente esse conjunto clonogênico. MÉTODOS: Por meio do processamento de amostras de glioblastomas (n=3), cumpriu-se a seguinte estratégia de ação: (i) estabelecimento da cultura primária de glioblastoma; (ii) isolamento e cultura de neuroesferas tumorais; (iii) purificação das células que iniciam os tumores (CD133+) por sistema de separação magnética (MACS); (iv) obtenção subesferas tumorais; (v) estudo da expressão de marcadores GFAP, CD133 e nestina. RESULTADOS: Este estudo descreveu com sucesso o processo de isolamento e cultivo de subesferas de glioblastoma, as quais são constituídas por um conjunto clonogênico de células caracterizadas imunofenotipicamente como neurais, capazes de iniciar a formação tumoral. CONCLUSÃO: Estes achados poderão contribuir para a compreensão do processo de gliomagênese.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Hospital Israelita Albert Einstein Instituto do CérebroHospital Israelita Albert Einstein Centro de Pesquisa ExperimentalHospital Israelita Albert Einstein Faculdade de EnfermagemUniversidade Federal de São Paulo (UNIFESP) Department of Neurology and NeurosurgeryHospital Israelita Albert Einstein Center for Neuro-oncologyHospital Israelita Albert EinsteinUNIFESP, Department of Neurology and NeurosurgerySciEL

    Avaliação da marcação de células-tronco mesenquimais de cordão umbilical com nanopartículas superparamagnéticas de óxido de ferro recobertas com Dextran e complexadas a Poli-L-Lisina

    Get PDF
    OBJECTIVE: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. METHODS: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37°C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxy-fluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. RESULTS: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine continue to proliferate over seven days and the percentage of cells in early or late apoptosis is low compared to the percentage of live cells over the three days. CONCLUSION: Our results showed that the use of poly-L-lysine complexed with superparamagnetic iron oxide nanoparticles/dextran provides better internalization of these superparamagnetic iron oxide nanoparticles in mesenchymal stem cells Thus, we demonstrated that this type of labeling is not cytotoxic to the mesenchymal stem cells, since the viability and apoptosis assays showed that the cells remain alive and proliferating. The efficiency of this type of labeling in mesenchymal stem cells can provide non-invasive methods for monitoring these cells in vivo.OBJETIVO: O objetivo deste estudo foi avaliar o efeito da marcação de células-tronco mesenquimais obtidas da parede da veia do cordão umbilical com nanopartículas de óxido de ferro superparamagnéticas recobertas com dextran e complexadas a um agente transfector não viral denominado de Poli-L-Lisina. MÉTODOS: A marcação das células-tronco mesenquimais foi realizada utilizando as nanopartículas de óxido de ferro superparamagnéticas recobertas com dextran complexadas e não complexadas a Poli-L-Lisina. As nanopartículas de óxido de ferro superparamagnéticas recobertas com dextran foram incubadas com o Poli-L-Lisina em um sonicador ultrassonico a 37ºC por 10 minutos, para a formação do complexo através de interação eletrostática. Em seguida, as células-tronco mesenquimais foram incubadas overnight com as nanopartículas de óxido de ferro superparamagnéticas complexadas e não com Poli-L-Lisina. Após o período de incubação as células-tronco mesenquimais foram avaliadas quanto à internalização do complexo nanopartícula de óxido de ferro superparamagnéticas /dextran/Poli-L-Lisina e nanopartícula de óxido de ferro superparamagnéticas /dextran através de ensaio citoquímico com azul de prússia. A viabilidade celular das células-tronco mesenquimais marcadas foi avaliada através do ensaio de proliferação celular utilizando o método de 5,6-carboxy-fluorescein-succinimidyl-ester e de morte celular através do método de anexina-iodeto de propídeo, ambos utilizando o recurso de citometria de fluxo. RESULTADOS: Observamos nos ensaios citoquímicos que as células-tronco mesenquimais que foram marcadas com as nanopartícula de óxido de ferro superparamagnéticas /dextran sem a Poli-L-Lisina, não internalizaram com eficiência as nanopartículas devido pouca detecção de sua presença no interior das células. As células-tronco mesenquimais marcadas com o complexo nanopartícula de óxido de ferro superparamagnéticas /dextran/Poli-L-Lisina internalizaram com eficiência as nanopartículas devido à maior presença destas no interior das células. Os ensaios de viabilidade e morte celular demonstraram respectivamente que as células-tronco mesenquimais marcadas com as nanopartícula de óxido de ferro superparamagnéticas /dextran/Poli-L-Lisina continuam proliferando ao longo de sete dias e a porcentagem de células em apoptose inicial e tardia é baixa em relação à porcentagem de células vivas ao longo de três dias. CONCLUSÃO: Evidenciamos através de nossos resultados a necessidade da utilização da Poli-L-Lisina complexada com a nanopartícula de óxido de ferro superparamagnéticas /dextran para melhor internalização nas células-tronco mesenquimais. Paralelamente, demonstramos que este tipo de marcação não é citotóxico para as células-tronco mesenquimais já que os testes de morte e viabilidade celular mostraram que as células continuam vivas e proliferando

    Structure and properties of nanoparticles prepared by sol-gel

    No full text
    Este trabalho propõe a síntese de vários materiais nanoestruturados pelo processo sol-gel. Foram preparados sóis a base de óxido de cério, hidroxiapatita e magnetita. Filmes a base de paládio metálico foram obtidos pela técnica de decomposição térmica e redução em atmosfera de nitrogênio. A caracterização estrutural dos materiais preparados foi realizada por DRX; a caracterização morfológica foi feita mediante SAXS, MET e MEV; a caracterização química por EDS; a caracterização térmica por DSC; a caracterização magnética por RPE e a caracterização relaxometrica por IRM. No caso da hidroxiapatita, foram realizadas medidas de FTIR. Nanopartículas a base de óxido de cério e Pdo com propriedades catalíticas foram depositadas na forma de filme sobre substratos de alumínio anodizado e na região da cabeça de pistões automotivos de motor a gasolina. Os catalisadores foram suportados nos poros que os anodizados apresentam. Os pistões foram submetidos a testes catalíticos e apresentaram redução nas emissões de CO, compostos orgânicos voláteis e NOx. Além disso, verificou-se a diminuição no consumo de combustível e aumento na eficiência do motor automotivo a gasolina. A síntese de nanopartículas a base de hidroxiapatita produz um material de morfologia nanométrica, apresentando um comportamento ferromagnético atribuído ao ferro como impureza nos precursores da síntese. Também foram obtidas sóis estáveis a base de nanopartículas de hidroxiapatita revestidas por ácido oléico. A síntese e caracterização do ferrofluido à base de nanopartículas de magnetita superparamagnéticas levaram a fabricação de um agente de contraste negativo, característica principal para aplicações na IRM.This work proposes the synthesis of several nonostructured materials by the sol-gel process. Cerium oxide, hydroxyapatite and magnetite based sols were prepared. Metallic palladium based films were obtained by the thermal decomposition technique followed by reduction under nitrogen atmosphere. Structural characterizations of the prepared materials were accomplished by XRD; morphologic characterization were carried out by SAXS, TEM and SEM, chemical characterization by EDS, thermal characterization using DSC, magnetic characterization by EPR, and the relaxometry characterization by MRI. FTIR\'s measurements were also accomplished in hydroxyapatite samples. Cerium oxide and palladium nanoparticles presenting catalytic properties were deposited as a film on anodized aluminum substrates and on automotive piston heads for gasoline motors. The catalyzers were supported by pores present in anodized aluminum surfaces. Catalytic test of the pistons have shown emission reduction of CO, organic volatile compounds, and NOx. Moreover, decrease in the fuel consumption and increase in automotive motor efficiency were verified. The synthesis of nanoparticles based on hydroxyapatite gives rise to a material of nanometric morphology. It presents a ferromagnetic behavior due to the iron as impurity in the synthesis precursors. Stable sols of hydroxyapatite nanoparticles covered by oleic acid were also obtained. Synthesis and characterization of ferrofluid based on superparamagnetic nanoparticles of magnetite lead to the production of an agent for negative contrast. It is the main characteristic for applications in MRI

    Study of internalization and viability of multimodal nanoparticles for labeling of human umbilical cord mesenchymal stem cells

    No full text
    OBJECTIVE: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10µg Fe/mL and 100µg Fe/mL. METHODS: We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. RESULTS: The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which were shown as blue granules co-localized in fluorescent clusters, thus characterizing magnetic and fluorescent properties of multimodal magnetic nanoparticles-Rhodamine B. CONCLUSION: The stability of multimodal magnetic nanoparticles-Rhodamine B found in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium assured intracellular mesenchymal stem cells labeling. This cell labeling did not affect viability of labeled mesenchymal stem cells since they continued to proliferate for five days

    In vivo magnetic resonance imaging tracking of C6 glioma cells labeled with superparamagnetic iron oxide nanoparticles

    No full text
    Objective: The aim of the current study was to monitor the migrationof superparamagnetic iron oxide nanoparticle (SPION)-labeled C6cells, which were used to induce glioblastoma tumor growth in ananimal model, over time using magnetic resonance imaging (MRI),with the goal of aiding in tumor prognosis and therapy. Methods: Twogroups of male Wistar rats were used for the tumor induction model.In the first group (n=3), the tumors were induced via the injectionof SPION-labeled C6 cells. In the second group (n=3), the tumorswere induced via the injection of unlabeled C6 cells. Prussian Bluestaining was performed to analyze the SPION distribution within theC6 cells in vitro. Tumor-inducing C6 cells were injected into the rightfrontal cortex, and subsequent tumor monitoring and SPION detectionwere performed using T2- and T2*-weighted MRI at a 2T fieldstrength. In addition, cancerous tissue was histologically analyzedafter performing the MRI studies. Results: The in vitro qualitativeevaluation demonstrated adequate distribution and satisfactory celllabeling of the SPIONs. At 14 or 21 days after C6 injection, a SPIONinducedT2- and T2*-weighted MRI signal reduction was observedwithin the lesion located in the left frontal lobe on parasagittaltopography. Moreover, histological staining of the tumor tissue withPrussian Blue revealed a broad distribution of SPIONs within the C6cells. Conclusion: MRI analyses exhibit potential for monitoring thetumor growth of C6 cells efficiently labeled with SPIONs

    Antiangiogenic Targets for Glioblastoma Therapy from a Pre-Clinical Approach, Using Nanoformulations

    No full text
    Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria. The data of the articles were analyzed in five contexts: the characteristics of the tumor cells; the animal models used to induce GBM for antiangiogenic treatment; the composition of nanoformulations and their physical and chemical characteristics; the therapeutic anti-angiogenic process; and methods for assessing the effects on antiangiogenic markers caused by therapies. The articles included in the review were heterogeneous and varied in practically all aspects related to nanoformulations and models. However, there was slight variance in the antiangiogenic effect analysis. CD31 was extensively used as a marker, which does not provide a view of the effects on the most diverse aspects involved in angiogenesis. Therefore, the present review highlighted the need for standardization between the different approaches of antiangiogenic therapy for the GBM model that allows a more effective meta-analysis and that helps in future translational studies

    Magnetohyperthermia for treatment of gliomas: experimental and clinical studies

    No full text
    ABSTRACT Gliomas comprise a group of heterogeneous primary tumors of the central nervous system that originate from glial cells. Malignant gliomas account for the majority of primary malignant CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent malignant glioma, and despite recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetohyperthermia consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field and has shown positive results in both preclinical and clinical assays. The aim of this review was to assess the relevance of hyperthermia induced by magnetic nanoparticles in treating gliomas and to describe possible variations of the technique and its implication in the effectiveness of treatment. An electronic search in the literature of articles published from January 1990 to November 2009 was performed, in databases ISI Web of Science and PubMed, and after screening according to the inclusion criteria, 11 articles were selected. Animal models showed that magnetohyperthermia was effective in promoting tumor cell death and reducing tumor mass or increasing survival of the animals. One clinical study demonstrated that magnetohyperthermia could be applied safely and with few adverse effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by magnetohyperthermia. Based on these data, it was concluded that the technique proved to be effective in most experiments, and improvement of the nanocomposites, as well as of the alternating magnetic field equipment, can contribute towards establishing magnetohyperthermia as a promising tool to treat malignant gliomas

    Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line

    No full text
    OBJECTIVE: To assess intracellular labeling and quantification by magnetic resonance imaging using iron oxide magnetic nanoparticles coated with biocompatible materials in rat C6 glioma cells in vitro. These methods will provide direction for future trials of tumor induction in vivo as well as possible magnetic hyperthermia applications. METHODS: Aminosilane, dextran, polyvinyl alcohol, and starch-coated magnetic nanoparticles were used in the qualitative assessment of C6 cell labeling via light microscopy. The influence of the transfection agent poly-L-lysine on cellular uptake was examined. The quantification process was performed by relaxometry analysis in T1 and T2weighted phantom images. RESULTS: Light microscopy revealed that the aminosilane-coated magnetic nanoparticles alone or complexed with poly-L-lysine showed higher cellular uptake than did the uncoated magnetic particles. The relaxivities of the aminosilane-coated magnetic nanoparticles with a hydrodynamic diameter of 50nm to a 3-T field were r1=(6.1±0.3)×10-5 ms-1mL/µg, r2=(5.3±0.1)× 10-4 ms-1mL/µg, with a ratio of r2 / r1 ≅ 9. The iron uptake in the cells was calculated by analyzing the relaxation rates (R1 and R2) using a mathematical relationship. CONCLUSIONS: C6 glioma cells have a high uptake efficiency for aminosilane-coated magnetic nanoparticles complexed with the transfection agent poly-L-lysine. The large ratio r2 / r1 ≅ 9 indicates that these magnetic nanoparticles are ideal for quantification by magnetic resonance imaging with T2-weighted imaging techniques
    corecore