59 research outputs found

    Combined numerical and experimental study of temperature pulsations in the fragment of header unit of heat exchanger of nuclear power unit clean-up and cooldown system

    Get PDF
    AbstractExperimental model of fragment of header unit of light-water nuclear power reactor clean-up and cooldown system was developed and manufactured. Experimental studies of temperature conditions were performed using the developed experimental model.Experimental distributions of temperature in characteristic zones of the header unit under study were obtained. The most thermally stressed zones of heat-exchanging surface were determined. Analysis of intensity of temperature pulsations on the heat-exchanging surface and coolant flow in different zones was performed, statistical and spectral characteristics of temperature pulsations were represented. Solutions were suggested aimed at the reduction of intensity of thermal pulsations.Calculation model of the fragment of header unit was developed and recommendations were given on the development of calculation models. Results of numerical modeling of transient temperature conditions and characteristics of temperature pulsations for different regimes of flow streamlining the model obtained using ANSYS CFX 14.0 CFD-code are presented here.Comparative analysis of experimental and calculated data was performed. It was demonstrated that calculated data are in agreement with experimental data with sufficient accuracy which gives the possibility to use the developed calculation model in the future for subsequent substantiation of heat exchanger design

    The Hojman Construction and Hamiltonization of Nonholonomic Systems

    No full text
    In this paper, using the Hojman construction, we give examples of various Poisson brackets which differ from those which are usually analyzed in Hamiltonian mechanics. They possess a nonmaximal rank, and in the general case an invariant measure and Casimir functions can be globally absent for them

    Chaplygin ball over a fixed sphere: explicit integration

    Full text link
    We consider a nonholonomic system describing a rolling of a dynamically non-symmetric sphere over a fixed sphere without slipping. The system generalizes the classical nonholonomic Chaplygin sphere problem and it is shown to be integrable for one special ratio of radii of the spheres. After a time reparameterization the system becomes a Hamiltonian one and admits a separation of variables and reduction to Abel--Jacobi quadratures. The separating variables that we found appear to be a non-trivial generalization of ellipsoidal (spheroconical) coordinates on the Poisson sphere, which can be useful in other integrable problems. Using the quadratures we also perform an explicit integration of the problem in theta-functions of the new time.Comment: This is an extended version of the paper to be published in Regular and Chaotic Dynamics, Vol. 13 (2008), No. 6. Contains 20 pages and 2 figure

    Quadratic solitons as nonlocal solitons

    Get PDF
    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for novel analytical solutions and the prediction of novel bound states of quadratic solitons.Comment: 4 pages, 3 figure

    Vacuum creation of quarks at the time scale of QGP thermalization and strangeness enhancement in heavy-ion collisions

    Get PDF
    The vacuum parton creation in quickly varying external fields is studied at the time scale of order 1 fm/cc typical for the quark-gluon plasma formation and thermalization. To describe the pre-equilibrium evolution of the system the transport kinetic equation is employed. It is shown that the dynamics of production process at times comparable with particle inverse masses can deviate considerably from that based on classical Schwinger-like estimates for homogeneous and constant fields. One of the effects caused by non-stationary chromoelectric fields is the enhancement of the yield of ssˉs\bar{s} quark pairs. Dependence of this effect on the shape and duration of the field pulse is studied together with the influence of string fusion and reduction of quark masses.Comment: REVTEX, 11pp. incl. 4 figures, to be published in Phys. Lett.

    Bose-Einstein condensates in a one-dimensional double square well: Analytical solutions of the Nonlinear Schr\"odinger equation and tunneling splittings

    Full text link
    We present a representative set of analytic stationary state solutions of the Nonlinear Schr\"odinger equation for a symmetric double square well potential for both attractive and repulsive nonlinearity. In addition to the usual symmetry preserving even and odd states, nonlinearity introduces quite exotic symmetry breaking solutions - among them are trains of solitons with different number and sizes of density lumps in the two wells. We use the symmetry breaking localized solutions to form macroscopic quantum superpositions states and explore a simple model for the exponentially small tunneling splitting.Comment: 11 pages, 11 figures, revised version, typos and references correcte

    Multiple scale hexagonal patterns

    No full text

    Suppressing the transition to turbulence in a strongly pumped pattern formation experiment

    No full text
    corecore