23 research outputs found

    Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2Ī± dephosphorylation.

    Get PDF
    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2Ī±) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2Ī± phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2Ī±-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2Ī± phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.This work was funded by the Medical Research Council (UK) (MRC Ref G1002610) and a Wellcome Trust Strategic Award for core facilities to the Cambridge Institute for Medical Research (CIMR, Wellcome 100140). SJM holds a Senior Clinical Research Fellowship from the Medical Research Council (MRC Ref G1002610). DR is a Wellcome Trust Principal Research Fellow (Wellcome 084812/Z/08/Z). The June Hancock Mesothelioma Research Fund funded LED (JH09-2); the British Lung Foundation funded HJC (APHD11-4); CD is a member of the CIMR PhD programme funded by the Wellcome Trust; and VP holds a Diabetes UK Arthur and Sadie Pethybridge PhD Studentship.This is the final published version. It first appeared at http://elifesciences.org/content/4/e04872

    p53 and translation attenuation regulate distinct cell cycle checkpoints during endoplasmic reticulum (ER) stress.

    Get PDF
    Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest

    The integrated stress response regulates BMP signalling through effects on translation.

    No full text
    BACKGROUND: Developmental pathways must be responsive to the environment. Phosphorylation of eIF2Ī± enables a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms from insects to mammals. RESULTS: Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2Ī± phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in vitro and rescues tissue development in vivo. CONCLUSION: These results identify a novel mechanism by which the ISR modulates BMP signalling during development

    Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB.

    Get PDF
    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR

    The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-Ī±1-antitrypsin.

    Get PDF
    Ī±1-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-Ī±1-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-Ī±1-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric Ī±1-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.-Dickens, J. A., OrdĆ³Ć±ez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-Ī±1-antitrypsin.J.A.D. was funded by a Medical Research Council (MRC) Clinical Research Training Fellowship and a starter grant from the Academy of Medical Sciences; S.J.M. is a MRC Senior Clinical Research Fellow. D.A.L. is funded by the MRC and by the University College London Hospitals National Institute for Health Research (NIHR) Biomedical Research Centre (London, United Kingdom), and is an NIHR Senior Investigator. The work was also supported by the Alpha1 Foundation. The Cambridge Institute for Medical Research microscopy core facility is supported by a Wellcome Trust Strategic Award (100140) and a Wellcome Trust equipment grant (093026).This is the final version of the article. It first appeared from the Federation of American Societies for Experimental Biology via https://doi.org/10.1096/fj.201600430

    PARG-deficient tumor cells have an increased dependence on EXO1/FEN1-mediated DNA repair

    Get PDF
    Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.</p
    corecore