44 research outputs found

    Spectroscopically Detected Formation of Oxygen Vacancies in Nano-Crystalline CeO2 – x

    Get PDF
    In this work the peculiarities of oxygen vacancies formation in cerium oxide nanoparticles for different external influences have been investigated by spectroscopic methods. The features of oxygen vacancies and therefore non-stoichiometric cerium oxide formation in CeO2 nanocrystals depending on the atmosphere of high temperature treatment were investigated. Stimulation of oxygen vacancies formation in reducing and neutral atmospheres was revealed. Occurrence of two different luminescence centers (viz. the charge-transfer complexes formed by Ce4 + and O2 – ions, and Ce3 + ions stabilized by vacancies) after cerium oxide nanoparticles annealing in a neutral atmosphere has been observed. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3094

    Spectroscopically detected segregation of Pr3+ ions in Y2SiO5 nanocrystals

    Get PDF
    Segregation of Pr3+ ions in Y2SiO5:Pr3+ nanocrystals was revealed by means of spectroscopic techniques. Increase of doped ions concentration in the near-surface layer of Y2SiO5:Pr3+ nanocrystals was confirmed by modification of luminescence spectra with the heat treatment temperature. Relaxation of excess elastic stresses created by Pr3+ ions with volumes greater than volume of regular Y3+ ion was determined to be the main cause of observed effects. Theoretical estimations clearly confirm the preliminary predictions. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3543

    Migration of Frenkel Excitons in PIC J-aggregates

    Get PDF
    Using luminescent exciton traps, an efficiency of the exciton migration in J-aggregates of pseudoisocyanine dye in solutions has been investigated. Applying a modified Stern-Volmer equation for an analysis of the J-aggregates luminescence quenching by the trap, the quenching of 50% of PIC J-aggregates luminescence at the ratio PIC/trap = 70:1 has been found. To increase the exciton migration efficiency, the Jaggregate structure was improved by the formation of a "J-aggregate-surfactant” complex. It results in 35% enhancement of the exciton migration efficiency in PIC J-aggregates. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3509

    Optically Detected Effect of Size on the Oxygen Vacancies Concentration in Cerium Oxide Nanocrystals

    Get PDF
    In this work effect of the size on the oxygen vacancies concentration in cerium oxide nanocrystals have been investigated by means of luminescence spectroscopy techniques. For determination of changes of oxygen stoichiometry intensity of 5d-4f luminescence of Ce3+ ions were used. It was shown that for CeO2 nanocrystals decrease of the size from 50 nm to 2 nm manifests itself in 8 times increase of the band intensity associated with vacancy-stabilized Ce3+ ions. The same effects have been observed at atmosphere variation from oxidizing to reducing and are connected with significant increase of concentration of oxygen vacancies. Obtained results allow to determine that decrease of the size stimulate formation of oxygen vacancies in cerium oxide nanocrystals

    Migration of Frenkel Excitons in PIC J-aggregates

    Get PDF
    Using luminescent exciton traps, an efficiency of the exciton migration in J-aggregates of pseudoisocyanine dye in solutions has been investigated. Applying a modified Stern-Volmer equation for an analysis of the J-aggregates luminescence quenching by the trap, the quenching of 50% of PIC J-aggregates luminescence at the ratio PIC/trap = 70:1 has been found. To increase the exciton migration efficiency, the Jaggregate structure was improved by the formation of a "J-aggregate-surfactant” complex. It results in 35% enhancement of the exciton migration efficiency in PIC J-aggregates. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3509

    Spectroscopic Study of Cationic Carbocyanine Dye Binding to GdYVO4:Eu Nanoparticles

    Get PDF
    The interaction of the inorganic nanoparticles (GdYVO4:Eu, d 2 nm) and organic carbocyanine dye 3,3’ -diethyloxa-carbocyanine iodide (DiOC2) has been studied spectrophotometrically. The formation of complexes of dye molecules with spherical nanoparticles GdYVO4:Eu in aqueous solutions of cationic dye DiOC2 was found. It is shown that nanoparticle GdYVO4:Eu can form a complex with 5-10 molecules of the cationic dye DiOC2 which leads to the decrease in the intensity of the absorption and luminescence spectra of the dye in aqueous solution. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3500

    Features of low-temperature exciton dynamics in J-aggregates with topological disorder

    No full text
    It is shown on the basis of an analysis of the J-band shape, luminescence spectra, and luminescence decay that self-trapping of excitons takes place in J-aggregates with strong topological disorder. A self-trapping barrier must be overcome for this to occur. A microscopic model of the self-trapped state is presented

    Newly synthesized carbocyanine fluorescent probes, their characteristics and behavior in proliferating cultures

    No full text
    Aim. To study possibile application of C2, C9, C18 and JC-1 carbocyanine fluorescent dyes for cell culture characterization. Methods. Morphological methods, fluorescence-activated cell sorting (FACS) analysis, luminescent microscopy were used. Results. The studied carbocyanine probes were shown to be preserved in dividing cells for at least 4 duplications. It was found that carbocyanine probe JC-1 did not transit from cell to cell under combined culturing of labeled and non-labeled cells. Conclusions. The paper covers the use of carbocyanine fluorescent probes for long-term culturing of cell lines. Probes C9 and JC-1 were optimal for the proliferative culture observation, allowing to trace mitochondrial functional state.ЦСль. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ возмоТности примСнСния ΠΊΠ°Ρ€Π±ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½ΠΎΠ²Ρ‹Ρ… флуорСсцСнтных Π·ΠΎΠ½Π΄ΠΎΠ² Π‘2, Π‘9, Π‘18 ΠΈ JC-1 для характСристики ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈ- чСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ (FACS- Π°Π½Π°Π»ΠΈΠ·), Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Π°Ρ микроскопия. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показано, Ρ‡Ρ‚ΠΎ исслСдуСмыС ΠΊΠ°Ρ€Π±ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½ΠΎΠ²Ρ‹Π΅ Π·ΠΎΠ½Π΄Ρ‹ ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ΡΡ Π² дСлящихся ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΡƒΠ΄Π²ΠΎΠ΅Π½ΠΈΠΉ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΊΠ°Ρ€Π±ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Π·ΠΎΠ½Π΄ JC-1 Π½Π΅ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΡƒ ΠΏΡ€ΠΈ совмСстном ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… ΠΈ Π½Π΅ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ флуорСсцСнтныС Π·ΠΎΠ½Π΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ. Для наблюдСния Π·Π° ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ являСтся ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π·ΠΎΠ½Π΄ΠΎΠ² Π‘9 ΠΈ JC-1, Ρ‡Ρ‚ΠΎ позволяСт ΠΎΡ‚ΡΠ»Π΅ΠΆΠΈΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ состояниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ.MΠ΅Ρ‚Π°. Дослідити моТливості застосування ΠΊΠ°Ρ€Π±ΠΎΡ†Ρ–Π°Π½Ρ–Π½ΠΎΠ²ΠΈΡ… флуорСсцСнтних Π·ΠΎΠ½Π΄Ρ–Π² Π‘2, Π‘9, Π‘18 Ρ‚Π° JC-1 для характСристики ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Використано ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ, ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΡ— Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€Ρ–Ρ— (FACS-Π°Π½Π°Π»Ρ–Π·), Π»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρƒ ΠΌΡ–ΠΊΡ€ΠΎΡΠΊΠΎΠΏΡ–ΡŽ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Показано, Ρ‰ΠΎ дослідТСні ΠΊΠ°Ρ€Π±ΠΎΡ†Ρ–Π°Π½Ρ–Π½ΠΎΠ²Ρ– Π·ΠΎΠ½Π΄ΠΈ Π·Π±Π΅Ρ€Ρ–Π³Π°ΡŽΡ‚ΡŒΡΡ Π² ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ…, Ρ‰ΠΎ Π΄Ρ–Π»ΡΡ‚ΡŒΡΡ, протягом Π½Π΅ мСнш Ρ‡ΠΎΡ‚ΠΈΡ€ΡŒΠΎΡ… ΠΏΠΎΠ΄Π²ΠΎΡ”Π½ΡŒ. ВстановлСно, Ρ‰ΠΎ ΠΊΠ°Ρ€Π±ΠΎΡ†Ρ–Π°Π½Ρ–Π½ΠΎΠ²ΠΈΠΉ Π·ΠΎΠ½Π΄ JC-1 Π½Π΅ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ–Π· ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ Π² ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Ρƒ ΠΏΡ€ΠΈ одночасному ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΠ²Π°Π½Π½Ρ– ΠΌΡ–Ρ‡Π΅Π½ΠΈΡ… Ρ– Π½Π΅ΠΌΡ–Ρ‡Π΅Π½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ Ρ€Ρ–Π·Π½ΠΈΡ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€. Висновки. ВстановлСно, Ρ‰ΠΎ Π·Π°Π·Π½Π°Ρ‡Π΅Π½Ρ– флуорСсцСнтні Π·ΠΎΠ½Π΄ΠΈ ΠΌΠΎΠΆΠ½Π° використовувати ΠΏΡ€ΠΈ Π΄ΠΎΠ²Π³ΠΎΡ‚Ρ€ΠΈΠ²Π°Π»ΠΎΠΌΡƒ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΠ²Π°Π½Π½Ρ– ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΈΡ… Π»Ρ–Π½Ρ–ΠΉ. Для спостСрСТСння Π·Π° ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€ΡƒΡŽΡ‡ΠΈΠΌΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΌ Ρ” застосування Π·ΠΎΠ½Π΄Ρ–Π² Π‘9 Ρ– JC-1, Ρ‰ΠΎ дозволяє відслідковувати Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΉ стан ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–ΠΉ

    Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells

    No full text
    Aim. To study the dynamics of lipophilic content release from nanocarriers of different types, organic molecular ensembles and inorganic nanoparticles (NPs) in vitro experiments. Methods. Two-channel ratiometric fluorescence detection method based on Forster Resonance Energy Transfer, fluorescent spectroscopy and micro-spectroscopy have been used. Results. It has been found that the profiles of lipophilic dyes release from organic nanocarriers (PC liposomes and SDS micelles) and inorganic ones (GdYVOβ‚„:Eu³⁺ and CeOβ‚‚ NPs) are well fitted by the first-order reaction kinetics in both model cell membranes and living cells (rat hepatocytes). The dye release constants (K) and half-lives (t1/2) were analyzed. Conclusions. GdYVOβ‚„:Eu³⁺ and CeOβ‚‚ NPs have been shown to provide faster lipophilic content release in model cell membranes as compared to PC liposomes. Negatively charged or lipophilic compounds added into nanocarriers can decrease the rate of lipophilic dyes release. Specific interaction of GdYVOβ‚„:Eu³⁺ NPs with rat hepatocytes has been observed.ΠœΠ΅Ρ‚Π°. ВивчСння Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ вилучСння Π»Ρ–ΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ вмісту Π· Π½Π°Π½ΠΎΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ, ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… молСкулярних ансамблів Ρ– Π½Π΅ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… наночастинок (НЧ) Π² СкспСримСнтах in vitro. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π”Π²ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½ΠΈΠΉ Ρ€Π°Ρ‚Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ рСєстрації інтСнсивності флуорСсцСнції Ρ–Π· застосуванням Π±Π΅Π·Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ пСрСнСсСння Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ збудТСння, ΠΌΠ΅Ρ‚ΠΎΠ΄ флуорСсцСнтної спСктроскопії Ρ– мікроспСктроскопії. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π’ΠΈΠ²Ρ–Π»ΡŒΠ½Π΅Π½Π½Ρ Π»Ρ–ΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π°Ρ€Π²Π½ΠΈΠΊΡ–Π² Π· ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… (ліпосоми Ρ– ΠΌΡ–Ρ†Π΅Π»ΠΈ) Ρ– Π½Π΅ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… (Π½Π° основі НЧ GdYVOβ‚„:Eu³⁺ Ρ– CeOβ‚‚) Π½Π°Π½ΠΎΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€Ρ–Π² ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ описано ΠΊΡ–Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡŽ Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ”ΡŽ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ порядку як Ρƒ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ…, Ρ‚Π°ΠΊ Ρ– Π² ΠΆΠΈΠ²ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ…. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ константи ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Π²ΠΈΠ²Ρ–Π»ΡŒΠ½Π΅Π½Π½Ρ (K) Ρ– час напіввивСдСння (t1/2) Π±Π°Ρ€Π²Π½ΠΈΠΊΡ–Π². Висновки. НаноконтСйнСри Π½Π° основі НЧ GdYVOβ‚„:Eu³⁺ Ρ– CeOβ‚‚ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ швидшС Π²ΠΈΠ²Ρ–Π»ΡŒΠ½Π΅Π½Π½Ρ Π»Ρ–ΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ вмісту Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ… порівняно Π· ліпосомами. ΠŸΡ€ΠΎΡ‚Π΅ додавання Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ зарядТСних Π°Π±ΠΎ Π»Ρ–ΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Ρƒ систСму Π·Π½ΠΈΠΆΡƒΡ” ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŒ Π²ΠΈΠ²Ρ–Π»ΡŒΠ½Π΅Π½Π½Ρ Π±Π°Ρ€Π²Π½ΠΈΠΊΡ–Π². ВиявлСно ΡΠΏΠ΅Ρ†ΠΈΡ„Ρ–Ρ‡Π½Ρ–ΡΡ‚ΡŒ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— НЧ GdYVOβ‚„:Eu³⁺ Π· Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ Ρ‰ΡƒΡ€Ρ–Π².ЦСль. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ высвобоТдСния Π»ΠΈΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ содСрТимого ΠΈΠ· Π½Π°Π½ΠΎΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, органичСских молСкулярных ансамблСй ΠΈ нСорганичСский наночастиц (НЧ) Π² экспСримСнтах in vitro. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Использовали Π΄Π²ΡƒΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹ΠΉ ратиомСтричСский ΠΌΠ΅Ρ‚ΠΎΠ΄ рСгистрации интСнсивности флуорСсцСнции Π½Π° основС Π±Π΅Π·Ρ‹Π·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ пСрСноса энСргии элСктронного возбуТдСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ флуорСсцСнтной спСктроскопии ΠΈ ΠΌΠΈΠΊΡ€ΠΎ- спСктроскопии. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’Ρ‹Ρ…ΠΎΠ΄ Π»ΠΈΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… краситСлСй ΠΈΠ· органичСских (липосомы ΠΈ ΠΌΠΈΡ†Π΅Π»Π»Ρ‹) ΠΈ нСорганичСских (Π½Π° основС НЧ GdYVOβ‚„:Eu³⁺ ΠΈ CeOβ‚‚) Π½Π°Π½ΠΎΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описан кинСтичСской Ρ€Π΅Π°ΠΊΡ†ΠΈΠ΅ΠΉ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΊΠ°ΠΊ Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ…, Ρ‚Π°ΠΊ ΠΈ Π² ΠΆΠΈΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ константы скорости высвобоТдСния (K) ΠΈ врСмя полувывСдСния (t1/2) краситСлСй. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. НаноконтСйнСры Π½Π° основС НЧ GdYVOβ‚„:Eu³⁺ ΠΈ CeOβ‚‚ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ быстроС высвобоТдСниС Π»ΠΈΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ содСрТимого Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ… ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с липосомами. Однако Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ заряТСнных ΠΈΠ»ΠΈ Π»ΠΈΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² систСму сниТааСт ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ высвобоТдСния краситСлСй. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ взаимодСйствия НЧ GdYVOβ‚„:Eu³⁺ с Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ крыс

    Effect of inorganic nanoparticles and organic complexes on their basis on free-radical processes in some model systems

    No full text
    Aim. Evaluation of free–radical activity of rare–earth based nanoparticles (NPs) (orthovanadates and CeO2) with different geometrical parameters, and organic complexes formed on their base with methylene blue (MB) photodynamic dye in abiotic and biotic systems (homogenate of liver, isolated mitochondria and isolated hepatocytes). Methods. Effects of NPs were estimated using luminol-dependent chemiluminescence (ChL) and by measurement of the final product of lipid peroxidation – malondialdehyde (MDA). Results. According to the ChL data in abiotic systems all NPs demonstrated antiradical activity. In biotic systems spherical extra small (1–2 nm) NPs of both types showed prooxidant effects of different degree; CeO2 of 8–10 nm have demonstrated a week antioxidant effect. The data of ChL correlated with the measurements of MDA-level. The effects of Β«NP-MBΒ» complexes were the same as the corresponding Β«bareΒ» NPs in different examined systems. The most prooxidant NPs in the presence of glutathione (GSH) did not aggravate free-radical processes. NPs demonstrated a more pronounced prooxidant effect in cells at pH 7.8 that may be a result of pH-dependent changes in protonated GSH. Conclusions. Differences in the effects of NPs in the biotic systems depend on their geometric parameters that determine their penetration and interaction with the cellular structures. This is also related to the processes on the NPs surface as well as in the near-surface layers.ΠœΠ΅Ρ‚Π°. ΠžΡ†Ρ–Π½ΠΈΡ‚ΠΈ Π²Ρ–Π»ΡŒΠ½ΠΎΡ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ наночастинок (НЧ) Π½Π° основі Ρ€Ρ–Π΄ΠΊΡ–ΡΠ½ΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² – ΠΎΡ€Ρ‚ΠΎΠ²Π°Π½Π°Π΄Π°Ρ‚Ρ–Π² Ρ‚Π° БСО2 Π· Ρ€Ρ–Π·Π½ΠΈΠΌΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Ρ– ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½ΠΈΡ… комплСксів Π½Π° Ρ—Ρ… основі Π· Ρ„ΠΎΡ‚ΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΌ Π±Π°Ρ€Π²Π½ΠΈΠΊΠΎΠΌ ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²ΠΈΠΌ Π±Π»Π°ΠΊΠΈΡ‚Π½ΠΈΠΌ (ΠœΠ‘) Π² Π°Π±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΈΡ… Ρ– Π±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΈΡ… систСмах (Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°Ρ‚ ΠΏΠ΅Ρ‡Ρ–Π½ΠΊΠΈ, Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½Ρ– ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Ρ—, Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½Ρ– Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚ΠΈ). ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π•Ρ„Π΅ΠΊΡ‚ΠΈ НЧ ΠΎΡ†Ρ–Π½ΡŽΠ²Π°Π»ΠΈ Π·Π° допомогою Π»ΡŽΠΌΡ–Π½ΠΎΠ»-Π·Π°Π»Π΅ΠΆΠ½ΠΎΡ— Ρ…Π΅ΠΌΡ–Π»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ†Ρ–Ρ— (Π₯Π›), Π° Ρ‚Π°ΠΊΠΎΠΆ Π²ΠΈΠΌΡ–Ρ€ΡŽΡŽΡ‡ΠΈ Ρ€Ρ–Π²Π΅Π½ΡŒ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°Β­Π»ΡŒΠ΄Π΅Π³Ρ‹Π΄Ρƒ (ΠœΠ”Π) – ΠΊΡ–Π½Ρ†Π΅Π²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρƒ пСроксидації Π»Ρ–ΠΏΡ–Π΄Ρ–Π². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π₯Π› ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ Π² Π°Π±Ρ–ΠΎΡ‚ΠΈΡ‡Π½Ρ–ΠΉ систСмі всі НЧ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΡƒΡŽΡ‚ΡŒ Π°Π½Ρ‚ΠΈΡ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ. Π’ Π±Ρ–ΠΎΡ‚ΠΈΡ‡Π½Ρ–ΠΉ систСмі сфСричні Скстрамалі (1–2 Π½ΠΌ) НЧ ΠΎΠ±ΠΎΡ… Ρ‚ΠΈΠΏΡ–Π² Ρ€Ρ–Π·Π½ΠΎΡŽ ΠΌΡ–Ρ€ΠΎΡŽ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΡƒΡŽΡ‚ΡŒ прооксидантну Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ; БСО2 Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΠΌ 8–10 Π½ΠΌ дСмонстрував слабкій антиоксидантній Π΅Ρ„Π΅ΠΊΡ‚. Π”Π°Π½Ρ– Π₯Π› ΠΊΠΎΡ€Π΅Π»ΡŽΡŽΡ‚ΡŒ Π· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΠΌΠΈ ΠΏΡ€ΠΈ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ– рівня ΠœΠ”Π. Π•Ρ„Π΅ΠΊΡ‚ комплСксів «НЧ-ΠœΠ‘Β» Π±ΡƒΠ² Ρ‚Π°ΠΊΠΈΠΌ ΠΆΠ΅, як Ρ– Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ Β«Π³ΠΎΠ»ΠΈΡ…Β» НЧ. ΠΠ°ΠΉΠ±Ρ–Π»ΡŒΡˆ прооксидантні НЧу присутності Π³Π»ΡƒΡ‚Π°Ρ‚Ρ–ΠΎΠ½Ρƒ (GSH) Π½Π΅ посилювали Π²Ρ–Π»ΡŒΠ½ΠΎ-Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ– процСси. Π’ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π°Ρ… ΠΏΡ€ΠΈ pH = 7.8 НЧ дСмонстрували ΠΎΡ‡Ρ–ΠΊΡƒΠ²Π°Π½Ρ– прооксидантні Π΅Ρ„Π΅ΠΊΡ‚ΠΈ, Ρ‰ΠΎ ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ пов’язано Π· pH-Π·Π°Π»Π΅ΠΆΠ½ΠΈΠΌΠΈ Π·ΠΌΡ–Π½Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ GSH. Висновки. Відмінності Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π² НЧ ΠΏΠΎΡΡΠ½ΡŽΡŽΡ‚ΡŒΡΡ Ρ—Ρ… Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, які Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° проникнСння Ρ– Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽ частинок Π· ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΈΠΌΠΈ структурами. Π’Π°ΠΊΠΎΠΆ Ρ†Π΅ ΠΏΠΎΠ²'язано Π· процСсами, Ρ‰ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΡΡ‚ΡŒ як Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– НЧ, Ρ‚Π°ΠΊ Ρ– Π² ΠΏΡ€ΠΈΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠΌΡƒ ΡˆΠ°Ρ€Ρ–.ЦСль. ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΡ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ наночастиц (НЧ) Π½Π° основС Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов – ΠΎΡ€Ρ‚ΠΎΠ²Π°Π½Π°Π΄Π°Ρ‚ΠΎΠ² ΠΈ БСО2 с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ гСомСтричСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ ΠΈ органичСских комплСксов Π½Π° ΠΈΡ… основС с фотодинамичСским краситСлСм ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²Ρ‹ΠΌ Π³ΠΎΠ»ΡƒΠ±Ρ‹ΠΌ (ΠœΠ“) Π² абиотичСских ΠΈ биотичСских систСмах (Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°Ρ‚ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ, ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚Ρ‹). ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π­Ρ„Ρ„Π΅ΠΊΡ‚Ρ‹ НЧ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ люминол-зависимой Ρ…Π΅ΠΌΠΈΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ (Π₯Π›), Π° Ρ‚Π°ΠΊΠΆΠ΅ измСряя ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ диальдСгида (ΠœΠ”Π) – ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° пСроксидации Π»ΠΈΠΏΠΈΠ΄ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π₯Π› Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² абиотичСской систСмС всС НЧ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π°Π½Ρ‚ΠΈΡ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’ биотичСской систСмС сфСричСскиС экстрамалыС (1–2 Π½ΠΌ) НЧ ΠΎΠ±ΠΎΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² Π² Ρ€Π°Π·Π½ΠΎΠΉ стСпСни Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€ΠΎΠΎΠΊΡΠΈΠ΄Π°Π½Ρ‚Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ; БСО2 Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 8–10 Π½ΠΌ дСмонстрируСт слабый антиоксидантный эффСкт. Π”Π°Π½Π½Ρ‹Π΅ Π₯Π› ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ уровня ΠœΠ”Π. Π­Ρ„Ρ„Π΅ΠΊΡ‚ комплСксов «НЧ-ΠœΠ“Β» Π±Ρ‹Π» Ρ‚Π°ΠΊΠΈΠΌ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² случаС Β«Π³ΠΎΠ»Ρ‹Ρ…Β» НЧ. НаиболСС прооксидантныС НЧ Π² присутствии Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° (GSH) Π½Π΅ усугубляли свободно-Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ процСссы. Π’ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΡ€ΠΈ pH = 7.8 НЧ дСмонстрировали ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΡ‹Π΅ прооксидантныС эффСкты, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связано с pH-зависимыми измСнСниями ΠΏΡ€ΠΎΡ‚Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ GSH. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Различия эффСктов НЧ ΠΎΠ±ΡŠΡΡΠ½ΡΡŽΡ‚ΡΡ ΠΈΡ… гСомСтричСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΠΈ взаимодСйствиС частиц с ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ структурами. Π’Π°ΠΊΠΆΠ΅ это связано с процСссами, проходящими ΠΊΠ°ΠΊ Π½Π° повСрхности НЧ, Ρ‚Π°ΠΊ ΠΈ Π² приповСрхностном слоС
    corecore