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In this work the peculiarities of oxygen vacancies formation in cerium oxide nanoparticles for different 

external influences have been investigated by spectroscopic methods. The features of oxygen vacancies and 

therefore non-stoichiometric cerium oxide formation in CeO2 nanocrystals depending on the atmosphere of 

high temperature treatment were investigated. Stimulation of oxygen vacancies formation in reducing and 

neutral atmospheres was revealed. Occurrence of two different luminescence centers (viz. the charge-

transfer complexes formed by Ce4 + and O2 – ions, and Ce3 + ions stabilized by vacancies) after cerium oxide 

nanoparticles annealing in a neutral atmosphere has been observed. 
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1. INTRODUCTION 
 

One of the most important functional rare earth ox-

ides, cerium dioxide (CeO2), has attracted much atten-

tion for promising applications in catalysts [1], fuel 

cells [2, 3], oxygen sensors [4], mechanical polishing [5], 

ultraviolet blocks [6], and luminescent materials [7, 8.] 

due to its oxygen storage capacity via facile Ce4 + / Ce3 + 

redox cycles, high mechanical strength, and optical 

properties.  

Cerium dioxide is a wide bandgap semiconductor 

that has been synthesized and studied in both thin-film 

[9, 10] and nanoparticle form [11-13]. As a thin-film, 

cerium oxide has unique properties such as a high re-

fractive index, a high dc dielectric constant and a lat-

tice constant similar to Si, making it suitable as an 

insulating material in Si device technology [14]. These 

properties make cerium oxide useful for applications in 

microelectronics and optics. 

Recently, ceria nanoparticles have attracted atten-

tion within the biomedical research community as a 

potential agent to inhibit cellular aging [15, 16]. Mixed 

brain cell cultures have been shown to have an in-

creased lifespan when a solution containing ceria na-

noparticles is introduced into their environment. The 

likely mechanism for the longevity increase is the scav-

enging of free radical species in the cells that would 

normally damage the cell, causing the cell to age [17]. 

The scavenging effect is attributed to the presence of 

Ce3 + ions that reduce the free radical species as the 

Ce3 + ions are oxidized to Ce4 +. 

Literature data on the structure and properties of 

nanosized CeO2 – x often contradict each other. Moreo-

ver, most of the properties of nanocrystalline CeO2 – x, 

remain almost unexplored.  

The main goal of the work was to find a way to de-

termine the oxygen vacancies concentration in the ce-

rium dioxide nanoparticles using optical spectroscopy. 

The optical spectroscopy techniques used were spectro-

photometry, to measure the excitation spectrum of the 

samples, and fluorometry, to measure the luminescence 

spectrum of the cerium dioxide nanoparticles. These 

techniques are widely used to characterize semicon-

ducting materials [18], but have not been extensively 

used on ceria nanoparticles. One advantage of these 

techniques is that the optical spectroscopy systems are 

inexpensive and have fast data acquisition.  

 

2. MATERIALS AND METHODS 
 

By means of Pechini-type sol-gel process cerium di-

oxide samples with an average diameter of 40 nm and 

narrow size distribution were synthesized (Fig. 1). 
 

 
 

Fig. 1 – TEM image of synthesized CeO2 nanocrystals 
 

The structural characteristics of nanocrystalline 

samples were examined from X-ray diffraction (XRD) 

(Fig. 2). All the diffraction peaks in these patterns can 

be indexed to a fluorite cubic phase of CeO2 (JCPDS 34-

0394) (Fig. 2). There are diffraction angles of 28, 33, 47, 
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56, 59, 69 and 76, which are corresponding to ceria 

(111), (200), (220), (311), (222), (400) and (331) respec-

tively. No impurity is observed, indicating that pure 

CeO2 is synthesized by a Pechini-type sol-gel process. 
 

 
 

Fig. 2 – XRD of the synthesized CeO2 nanocrystals 
 

Luminescence spectra of CeO2 nanocrystals have 

been obtained by means of the spectrofluorimeter based 

on grid monochromator. Reciprocal linear dispersion of 

monochromator was equal to 1.6 nm / mm. Registration 

of spectra was carried out by photomultiplier tube  

operating in photon counting mode. Luminescence was 

excited by helium-cadmium laser at 325 nm. Possibility 

of temperature variation was obtained by placing of the 

sample in the cryostat. 

 

3. RESULTS AND DISCUSSION 
 

Cerium dioxide has the fluorite structure, which 

consists of a simple cubic oxygen sub-lattice with the 

cerium ions occupying alternate cube centres (Fig. 3). 

In the perfect ceria the oxygen ions have a formal 

charge of 2 –; the anions are tetrahedrally coordinated 

to the cerium ions and octahedrally coordinated to the 

surrounding oxygen atoms. The cerium ions have a 

formal charge of 4 + (the electronic structure is 

[Ne]5d10) and are coordinated to eight oxygen ions. 
 

 
Fig. 3 – Structure of cerium dioxide 

 

Cerium with a 4f25d0f6s2 electron configuration can 

exhibit both the + 3 and + 4 oxidation states, and in-

termediate oxides with composition in the range be-

tween Ce2O3 and CeO2  can be formed. Thermodynamic 

data indicate that cerium is unstable in the presence of 

oxygen and that Ce2O3 and CeO2 are easily formed [19]. 

Due to the low value of oxidation-reduction poten-

tial of the Се4 + / Се3 + pair (1.61 eV) cerium dioxide is 

able to attach and release oxygen rather easily (due to 

Ce3 +-Ce4 + transition). At high temperatures and low 

oxygen pressure cerium dioxide tends to reduce Ce4 + 

ions to Ce3 + ones and forms a continuous series of oxy-

gen-deficient, nonstoichiometric oxides (CeO2 – x). These 

oxides are characterized by disordered arrangement of 

oxygen vacancies. At the same time at low tempera-

tures these oxides have a highly organized fluorite 

structure CeO2 [20, 21]. Oxygen nonstoichiometry de-

fines basic biomedical properties of cerium oxide – the 

ability to participate in redox processes taking place in 

the organism. 

CeO2 belongs to a class of materials whose optical 

properties are determined by the charge-transfer tran-

sitions. The formation of the charge transfer complexes 

is  a common phenomenon for all rare-earth ions. Such 

transitions can be identified by broad bands in the ab-

sorption or excitation spectra. However, most of the 

rare-earth ions do not exhibit CT-luminescence due to 

nonradioactive relaxation from the CT-state. Another 

typical feature of the CT luminescence is a very low 

temperature quenching. 

As was already mentioned, cerium can exhibit both 

the + 3 and + 4 oxidation states, and oxygen deficient 

non-stoichiometric oxides with composition in the 

range between Ce2O3 and CeO2 can be formed. In this 

case there is a significant dependence of the stoichiom-

etry of the sample from the atmosphere in which high-

temperature treatment is carried out. Reducing atmos-

phere stimulates the formation of oxygen vacancies 

and, consequently, the formation of nonstoichiometric 

oxides. In the oxidizing atmosphere number of oxygen 

vacancies in the crystal is much lower thus leading to 

formation of CeO2 crystalline phase. So the processes of 

oxygen vacancies formation in CeO2 crystals can be 

controlled by changing the atmosphere of high-

temperature treatment. 

In addition, increased role of the surface for CeO2 

nanocrystals compared to the bulk should stimulate 

the formation of oxygen vacancies that may lead to the 

nonstoichiometric structure even in the absence of a 

reducing atmosphere.  

Cerium compounds in which the valence of cerium 

is 4+ have no luminescence in contrast to trivalent ce-

rium compounds, which has an intense 4f-5d transition 

in the blue region of the luminescence spectrum. Thus, 

by the intensity of the 4f-5d luminescence it is possible 

to make conclusions about the presence of the Ce3 + 

ions, and therefore the degree of nonstoichiometric of 

the structure of the nanocrystals. 

In this work the peculiarities of oxygen vacancies 

formation in cerium oxide nanoparticles for different 

external influences have been investigated by spectro-

scopic methods. 

In order to explore the features of the formation of 

oxygen vacancies in the nanocrystals CeO2, we have 

carried out studies of the luminescence spectra after 

high temperature treatment in different atmospheres. 
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High-temperature annealing was carried out in an oxi-

dizing (air), inert (Ar) and reducing (hydrogen) envi-

ronments at 1000 C for 2 hours. The measurement of 

luminescence spectra was carried out at room tempera-

ture (293 K) and liquid nitrogen (77 K) temperatures. 

All three spectra are characterized by an intense 

luminescence band with maximum at 625 nm. This 

luminescence band can be attributed to the charge-

transfer (CT) transition, which occurs due to electron 

transfer from the ligand to the cerium ion. CT-

transitions in the absorption spectra have been ob-

served for almost all rare-earth ions [22, 23]. In [24, 25] 

it was shown that the luminescence of cerium in the 

crystal Sr2CeO4 is also caused by charge transfer tran-

sitions. Such transitions can be identified by broad 

bands in the excitation spectra. The broad band in the 

excitation spectrum of CeO2 nanocrystals heat-treated 

in an oxidizing environment comes from the charge 

transfer (CT) transition from O2 – to Ce4 + (Fig. 4). The 

fact that the luminescence in CeO2 nanocrystal belongs 

to CT-transition is also confirmed by the study of low-

temperature spectra. 
 

 
 

Fig. 4 – Excitation spectrum of CeO2 nanocrystals heat-

treated in an oxidizing environment 
 

In the luminescence spectrum of nanocrystals heat-

treated in an oxidizing environment (Fig. 5) only lumines-

cence band at 625 nm related to charge-transfer transition 

is present. The absence of luminescence of trivalent ceri-

um indicates that the number of oxygen vacancies in the 

nanocrystal is small, so that the structure of the nano-

crystal is close to the stoichiometric CeO2. 

In a reducing environment (Fig. 6) in addition to the 

charge transfer band an intense luminescence band 

with maximum at 390 nm is observed. 

Occurrence of this band confirms the statement 

that the reducing environment stimulates the for-

mation of a large number of vacancies in the crystal 

structure of CeO2, which leads to a high degree of stoi-

chiometry and formation of Ce3 + ions. The transition of 

some of the cerium ions to the trivalent state in a re-

ducing atmosphere has been shown previously for the 

bulk crystal. However, such a transition was observed 

only at sufficiently high pressures. Thus, the transition 

from bulk to nanoscale crystals stimulates the for-

mation of oxygen vacancies in the crystal lattice. 
 

 
 

Fig. 5 – Luminescence spectrum of CeO2 nanocrystals heat-

treated in an oxidizing environment 
 

 
 

Fig. 6 – Luminescence spectrum of CeO2 nanocrystals heat-

treated in an reducing environment 
 

 
 

Fig. 7 – Excitation spectrum of CeO2 nanocrystals heat-

treated in a reducing environment 

 

The excitation spectrum of the band at 390 nm is 

significantly different from the charge transfer complex 

excitation band (Fig. 7). 
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The excitation spectrum contains characteristic 

bands corresponding to 4f-5d transitions of the Ce3 + 

ion. This band can be clearly attributed to 4f-5d transi-

tion of trivalent cerium. 

Even more significant evidence of this statement 

was the presence of additional band in the lumines-

cence spectra of CeO2 nanocrystals after high tempera-

ture treatment in an inert atmosphere (Fig. 8). 
 

 
 

Fig. 8 – Luminescence spectrum of CeO2 nanocrystals heat-

treated in an inert environment 

 

As in the case of a reducing atmosphere this band 

can be attributed to 4f-5d transition of trivalent ceri-

um. The formation of a significant number of oxygen 

vacancies in the absence of a reducing atmosphere is 

not typical for bulk CeO2 crystals and, thus, this effect 

is a manifestation of the increased role of the surface in 

nanocrystals.  

 

4. CONCLUSION 
 

Thus, peculiarities of oxygen vacancies formation in 

cerium oxide nanoparticles for different external influ-

ences have been investigated by spectroscopic methods. 

Features of oxygen vacancies and therefore non-

stoichiometric cerium oxide formation in CeO2 nano-

crystals depend on the atmosphere of high temperature 

treatment. Reducing and neutral atmospheres stimu-

lates oxygen vacancies formation. Occurrence of two 

different luminescence centers (viz. the charge-transfer 

complexes formed by Ce4 + and O2 – ions, and Ce3 + ions 

stabilized by vacancies) after  cerium oxide nanoparti-

cles annealing in a neutral atmosphere has been ob-

served. 
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