140 research outputs found
Brown stem rot of soybean—understanding and managing this vexing disease
Brown stem rot (BSR) is a common and important soilborne disease of soybean in the North Central U.S. and Canada. BSR can reduce yields over 25%, but losses are typically lower due in part to crop rotation and the use of resistant cultivars. Some have suggested that BSR may be the most undermanaged soybean disease in parts of the North Central Region and it doesn’t get the respect it deserves. Although this could be debated, the fact remains that since BSR was first discovered in Illinois about 70 years ago it has been a persistent yet erratic drag on soybean yields in many areas. The BSR pathogen infects the inner stem and can cause damage to leaves, but symptoms often do not develop on leaves and then BSR may be overlooked in the field
Meta-Analysis of Yield Response of Hybrid Field Corn to Foliar Fungicides in the U.S. Corn Belt
The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P \u3c 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P \u3c 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (ploss) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of 2.97/bushel) and application costs of $40 to 95/ha, ploss for disease severity \u3c5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was \u3e5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high ploss values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high
Identifying New Sources of Resistance to Brown Stem Rot in Soybean
Brown stem rot (BSR), caused by the fungus Phialophora gregata f. sp. sojae (Allington & D.W. Chamberlain) W. Gams (syn. Cadophora gregata), causes yield losses up to 38%. Three dominant BSR-resistant genes have been identified: Rbs1, Rbs2, and Rbs3. Additional BSR resistance loci will complement breeding efforts by expanding the soybean [Glycine max (L.) Merr.] genetic base. The objective of this research was to determine if PI 594637, PI 594638B, PI 594650A, and PI 594858B contained novel BSR resistance genes. The accessions were crossed to three genotypes with known BSR resistance genes and populations were developed for allelism studies. A minimum of 60 F2:3 families tracing to individual F2 plants in each population were used, and six seeds from each F2:3 family were tested. Resistant and susceptible controls and parents were also included. The BSR symptoms were assessed under growth chamber conditions 5 wk after inoculation by measuring foliar and stem severities and recovery of P. gregata from stem sections. Allelism tests of F2:3 plants from crosses of PI 594638B, PI 594858B, and PI 594650A with the resistant sources fit a 15:1 ratio, indicating that the resistant gene possessed by each of the PIs was nonallelic to Rbs1, Rbs2, and Rbs3. The three PIs contain at least one novel BSR resistance gene and have the potential to serve as donors to elite germplasm, increasing stability of host resistance to P. gregata. Allelism tests of PI 594637 segregated in a 3:1 ratio and no significant difference was found between PI 594637 and the susceptible controls, indicating that PI 594637 is susceptible to BSR
Ecology and diversity of culturable fungal species associated with soybean seedling diseases in the Midwestern United States
Aims: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence.
Methods and Results: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species.
Conclusion: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species.
Significance and Impact of the Study: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause
A global-temporal analysis on Phytophthora sojae resistance-gene efficacy
Plant disease resistance genes are widely used in agriculture to reduce disease outbreaks and epidemics and ensure global food security. In soybean, Rps (Resistance to Phytophthora sojae) genes are used to manage Phytophthora sojae, a major oomycete pathogen that causes Phytophthora stem and root rot (PRR) worldwide. This study aims to identify temporal changes in P. sojae pathotype complexity, diversity, and Rps gene efficacy. Pathotype data was collected from 5121 isolates of P. sojae, derived from 29 surveys conducted between 1990 and 2019 across the United States, Argentina, Canada, and China. This systematic review shows a loss of efficacy of specific Rps genes utilized for disease management and a significant increase in the pathotype diversity of isolates over time. This study finds that the most widely deployed Rps genes used to manage PRR globally, Rps1a, Rps1c and Rps1k, are no longer effective for PRR management in the United States, Argentina, and Canada. This systematic review emphasizes the need to widely introduce new sources of resistance to P. sojae, such as Rps3a, Rps6, or Rps11, into commercial cultivars to effectively manage PRR going forward
Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia
Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95Â M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate
A Coordinated Effort to Manage Soybean Rust in North America: A Success Story in Soybean Disease Monitoring
Existing crop monitoring programs determine the incidence and distribution of plant diseases and pathogens and assess the damage caused within a crop production region. These programs have traditionally used observed or predicted disease and pathogen data and environmental information to prescribe management practices that minimize crop loss (3,69). Monitoring programs are especially important for crops with broad geographic distribution or for diseases that can cause rapid and great economic losses. Successful monitoring programs have been developed for several plant diseases, including downy mildew of cucurbits, Fusarium head blight of wheat, potato late blight, and rusts of cereal crops (13,36,51,80)
Pseudomonas syringae pv. actinidiae (PSA) Isolates from Recent Bacterial Canker of Kiwifruit Outbreaks Belong to the Same Genetic Lineage
Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks
- …