223 research outputs found

    The Putative Role of the Antiageing Protein Klotho in Cardiovascular and Renal Disease

    Get PDF
    Ageing is a multifactorial process often characterized by a progressive decline in physiological function(s). Ageing can and is often associated with an increased incidence of cardiovascular and renal disease. Klotho is a novel antiageing gene that encodes a protein with multiple pleiotropic functions including an emerging role in cardiorenal disease. Mice deficient for this gene display a phenotype of premature human ageing characterized by diffuse vascular calcification, altered calcium/phosphate metabolism, and shortened lifespan. Klotho is mainly expressed in the renal tubules but it also exists as circulating soluble form detectable in the blood, with systemic effects. Reduction in soluble Klotho has been associated with renal disease, hyperphosphataemia, increased oxidative stress, endothelial dysfunction, and diffuse vascular calcification. Conversely, overexpression of Klotho promotes cardiovascular-renal protection. The majority of the research on Klotho has been conducted in vitro and in animal studies but there is emerging data from human studies which suggest that Klotho may be a modifiable factor involved in the pathogenesis of cardiovascular and renal disease in at-risk populations. Further data is required to confirm if this novel protein can emerge as therapeutic tool that may be used to prevent or slow progression of cardiorenal disease

    Influenza del clima ondoso e delle mareee sulla posizione della linea di riva: Lido Signorino (Marsala)

    Get PDF
    La conoscenza della posizione della linea di riva nel tempo è indispensabile per verificare la necessità di opere di difesa e per lo sviluppo di piani di gestione costiera. Essa rappresenta l’intersezione tra la superficie marina e quella terrestre, non è un’entità geometrica fissa, ma varia continuamente a causa del moto ondoso e delle fluttuazioni del livello marino ed è in continuo movimento a causa dei fenomeni di trasporto solido. La maggior difficoltà riscontrata nelle operazioni di rilievo è la determinazione esatta della sua posizione. Risulta pertanto necessaria la comprensione delle caratteristiche del moto ondoso (conoscenza delle mareggiate), dei livelli marini e del profilo trasversale della spiaggia al momento del rilievo. Questo lavoro di ricerca ha come principale obbiettivo l’analisi dell'influenza del clima ondoso e della marea sulla stima della posizione della linea di riva attraverso immagini telerilevate, inoltre viene proposta una nuova metodologia messa a punto su un caso di studio reale. La metodologia proposta ha carattere multi disciplinare, considera infatti, sia aspetti geomorfologici, sia aspetti idraulico marittimi e utilizza strumenti tipici del telerilevamento. Lo studio del clima ondoso è stato condotto a partire dalla mareggiata ordinaria fatta propagare nell'area in studio attraverso un modello di onda spettrale (SWAN: Simulating WAves Nearshore). Inoltre si sono considerate sia le oscillazioni mareali sia la massima altezza raggiunta dall’onda sulla spiaggia emersa (run-up). Il caso in studio ha messo in evidenza gli errori prodotti nella stima della posizione della linea di riva mediante la semplice individuazione della stessa attraverso ortofoto georiferite (1994, 2000, 2006) infatti in tal modo il tracciamento della linea di riva viene eseguito considerando solamente l'interfaccia "asciutto/bagnato". Riportando sulle ortofoto lo spostamento della linea di riva determinato dal clima ondoso associato all’ordinaria mareggiata e riportando anche le massime oscillazioni mareali, si è riscontrato che durante l’intervallo temporale analizzato l’errore aggiuntivo prodotto risulterebbe superiore a 15 m, inficiando l’attendibilità di uno studio diacronico dell'evoluzione della linea di riva

    Soil water content assessment: Critical issues concerning the operational application of the triangle method

    Get PDF
    Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies

    Lenograstim in preventing chemotherapy-induced febrile neutropenia in patients with soft tissue sarcoma

    Get PDF
    Background: Neutropenia and its complications represent one of the principal dose-limiting toxicity issues in chemotherapeutic regimens for soft tissue sarcoma. Prophylactic granulocyte colony-stimulating factor (G-CSF) reduces the risk of febrile neutropenia (FN). The correct timing of G-CSF administration should be considered in order to optimize the prophylactic treatment. Patients and Methods: Patients (≥18 years old) affected by soft tissue sarcoma and treated with epirubicin and ifosfamide, underwent prophylactic treatment with G-CSF (lenograstim at 263 μg) from day 5 to day 9. The proportion of patients experiencing FN and G4 neutropenia was considered. Results: A total of 36 patients receiving three cycles of chemotherapy with epirubicin plus ifosfamide were treated. None developed FN; G4 neutropenia was reported in 17% of patients. No treatment delay or dose reduction was required, no antibiotic therapy was administered and no hospitalization occurred. Conclusion: Five-day lenograstim treatment is efficient as prophylaxis of FN for soft tissue sarcoma chemotherapy regimens and allows maintenance of chemotherapy dose intensity

    Assessing the performance of different model-based techniques to estimate water content in the upper soil layer

    Get PDF
    The knowledge of soil water content (SWC) of the upper soil layer is important for most hydrological processes occurring over vegetated areas and under dry climate. Because direct field measurements of SWC are difficult, the use of different type of sensors and model-based approaches have been proposed and extensively used during the last decade. The main objective of this work is to assess the performance of two models estimating SWC of the upper soil layer: the transient line heat source method and the physically based Hydrus-1D model. The models’ performance is assessed using field measurements acquired through a Time Domain Reflectometer (TDR). The experiment was carried out on an olive orchard located near the town of Castelvetrano (South-West of Sicily - latitude 37.6429◦ , longitude 12.8471◦ ). The temporal dynamic of topsoil water content was investigated in two samplers, under wet and dry conditions. The samplers were opened at the upper boundary and inserted into the soil to ensure the continuity of the soil surface. A K2D Pro sensor allowed to measure the soil thermal properties allowing to estimate soil thermal inertia and then SWC. The physically based Hydrus-1D model was also used to estimate SWC of both samples. Hourly records of soil water contents, acquired by a TDR100 probe, were used to validate both the considered models. The comparison between SWCs simulated by Hydrus-1D and the corresponding values measured by the TDR method evidenced a good agreement. Similarly, even SWCs derived from the thermal diffusion model resulted fairly close to those measured with the TDR

    Assessing the performance of thermal inertia and Hydrus models to estimate surface soil water content

    Get PDF
    The knowledge of soil water content (SWC) dynamics in the upper soil layer is important for several hydrological processes. Due to the difficulty of assessing the spatial and temporal SWC dynamics in the field, some model-based approaches have been proposed during the last decade. The main objective of this work was to assess the performance of two approaches to estimate SWC in the upper soil layer under field conditions: the physically-based thermal inertia and the Hydrus model. Their validity was firstly assessed under controlled laboratory conditions. Thermal inertia was firstly validated in laboratory conditions using the transient line heat source (TLHS) method. Then, it was applied in situ to analyze the dynamics of soil thermal properties under two extreme conditions of soil-water status (well-watered and air-dry), using proximity remote-sensed data. The model performance was assessed using sensor-based measurements of soil water content acquired through frequency (FDR) and time domain reflectometry (TDR). During the laboratory experiment, the Root Mean Square Error (RMSE) was 0.02 m3 m??3 for the Hydrus model and 0.05 m3m-3for the TLHS model approach. On the other hand, during the in situ experiment, the temporal variability of SWCs simulated by the Hydrus model and the corresponding values measured by the TDR method evidenced good agreement (RMSE ranging between 0.01 and 0.005 m3m-3). Similarly, the average of the SWCs derived from the thermal diffusion model was fairly close to those estimated by Hydrus (spatially averaged RMSE ranging between 0.03 and 0.02 m3m-3)

    Power Sensitivity Analysis of Multi-Frequency, Multi-Polarized, Multi-Temporal SAR Data for Soil-Vegetation System Variables Characterization

    Get PDF
    The knowledge of spatial and temporal variability of soil water content and others soil-vegetation variables (leaf area index, fractional cover) assumes high importance in crop management. Where and when the cloudiness limits the use of optical and thermal remote sensing techniques, synthetic aperture radar (SAR) imagery has proven to have several advantages (cloud penetration, day/night acquisitions and high spatial resolution). However, measured backscattering is controlled by several factors including SAR configuration (acquisition geometry, frequency and polarization), and target dielectric and geometric properties. Thus, uncertainties arise about the more suitable configuration to be used. With the launch of the ALOS Palsar, Cosmo-Skymed and Sentinel 1 sensors, a dataset of multi-frequency (X, C, L) and multi-polarization (co- and cross-polarizations) images are now available from a virtual constellation; thus, significant issues concerning the retrieval of soil-vegetation variables using SAR are: (i) identifying the more suitable SAR configuration; (ii) understanding the affordability of a multi-frequency approach. In 2006, a vast dataset of both remotely sensed images (SAR and optical/thermal) and in situ data was collected in the framework of the AgriSAR 2006 project funded by ESA and DLR. Flights and sampling have taken place weekly from April to August. In situ data included soil water content, soil roughness, fractional coverage and Leaf Area Index (LAI). SAR airborne data consisted of multi-frequency and multi-polarized SAR images (X, C and L frequencies and HH, HV, VH and VV polarizations). By exploiting this very wide dataset, this paper, explores the capabilities of SAR in describing four of the main soil-vegetation variables (SVV). As a first attempt, backscattering and SVV temporal behaviors are compared (dynamic analysis) and single-channel regressions between backscattering and SVV are analyzed. Remarkably, no significant correlations were found between backscattering and soil roughness (over both bare and vegetated plots), whereas it has been noticed that the contributions of water content of soil underlying the vegetation often did not influence the backscattering (depending on canopy structure and SAR configuration). Most significant regressions were found between backscattering and SVV characterizing the vegetation biomass (fractional cover and LAI). Secondly, the effect of SVV changes on the spatial correlation among SAR channels (accounting for different polarization and/or frequencies) was explored. An inter-channel spatial/temporal correlation analysis is proposed by temporally correlating two-channel spatial correlation and SVV. This novel approach allowed a widening in the number of significant correlations and their strengths by also encompassing the use of SAR data acquired at two different frequencie
    corecore