72 research outputs found

    Migrations et territoires

    Get PDF
    Le pavage territorial est la forme primordiale d’organisation de l’espace terrestre. Chaque territoire est le produit de l’histoire d’un État dont l’essence réside corrélativement dans la maîtrise de son territoire. Or la mobilité des populations en général et les migrations en particulier sont potentiellement pour les États une limite à leur souveraineté. De ce fait ils s’efforcent de les contrôler en les instrumentalisant. Mais de leur côté les migrations tendent à échapper à leur contrôle et même, en prenant un caractère de plus en plus souvent diasporique, à devenir des acteurs à part entière de la géographie du monde actuel. D’où des relations dialectiques, variables dans le temps et dans l’espace, entre migrations et territoires, entre pavage et réseau. Ces deux formes d’organisation de l’espace sont à la fois complémentaires et antagoniques du point de vue des États qui doivent impérativement en rester maîtres. D’où l’acuité et la complexité du problème dans le monde actuel.Migrations and territories. Territorial paving is the primordial form of organization of space on earth. Each territory is the product of the history of a state the essence of which resides reciprocally on the mastery over its territory. In fact the mobility of populations in general and migrations in particular are for the states potential limits to their sovereignty. Consequently they do their best to maintain control over them and try to use them to their own profit. But as far as migrations are concerned, they tend to escape from their control and, assuming most of the time a more and more dispersive capacity, they also tend to become real actors in the geography of the present world. Hence dialectic relations, variable in time and space, between migrations and territories, paving and network. Both these forms of organization of space are at the same time complementary and antagonistic from the point of view of the states that have to maintain their control over them. Hence that acute and complex issue in our contemporary world

    Ce-L3-XAS study of the temperature dependence of the 4f occupancy in the Kondo system Ce2Rh3Al9

    Get PDF
    We have used temperature dependent x-ray absorption at the Ce-L3 edge to investigate the recently discovered Kondo compound Ce2Rh3Al9. The systematic changes of the spectral lineshape with decreasing temperature are analyzed and found to be related to a change in the 4f4f occupation number, n_f, as the system undergoes a transition into a Kondo state. The temperature dependence of nfn_f indicates a characteristic temperature of 150K, which is clearly related with the high temperature anomaly observed in the magnetic susceptibility of the same system. The further anomaly observed in the resistivity of this system at low temperature (ca. 20K) has no effect on n_f and is thus not of Kondo origin.Comment: 7 pages, three figures, submitted to PR

    Anomalous spectral weight in photoemission spectra of the hole doped Haldane chain Y2-xSrxBaNiO5

    Full text link
    In this paper, we present photoemission experiments on the hole doped Haldane chain compound Y2−xSrxBaNiO5Y_{2-x}Sr_xBaNiO_5. By using the photon energy dependence of the photoemission cross section, we identified the symmetry of the first ionisation states (d type). Hole doping in this system leads to a significant increase in the spectral weight at the top of the valence band without any change in the vicinity of the Fermi energy. This behavior, not observed in other charge transfer oxides at low doping level, could result from the inhomogeneous character of the doped system and from a Ni 3d-O 2p hybridization enhancement due to the shortening of the relevant Ni-O distance in the localized hole-doped regions.Comment: 5 pages, 4 figure

    Ultrafast Atomic Diffusion Inducing a Reversible (2√3×2√3)R30°↔(√3×√3)R30° Transition on Sn/Si(111)∶B

    Get PDF
    Dynamical phase transitions are a challenge to identify experimentally and describe theoretically. Here, we study a new reconstruction of Sn on silicon and observe a reversible transition where the surface unit cell divides its area by a factor of 4 at 250 °C. This phase transition is explained by the 24-fold degeneracy of the ground state and a novel diffusive mechanism, where four Sn atoms arranged in a snakelike cluster wiggle at the surface exploring collectively the different quantum mechanical ground states.This work was supported by the French Agence Nationale de la Recherche (ANR) under Contract SurMott, No. NT-09-618999, and by Spanish Ministerio de Economía y Competitividad, Project No. MAT2014-59966-R

    The Kondo Resonance in Electron Spectroscopy

    Full text link
    The Kondo resonance is the spectral manifestation of the Kondo properties of the impurity Anderson model, and also plays a central role in the dynamical mean-field theory (DMFT) for correlated electron lattice systems. This article presents an overview of electron spectroscopy studies of the resonance for the 4f electrons of cerium compounds, and for the 3d electrons of V_2O_3, including beginning efforts at using angle resolved photoemission to determine the k-dependence of the resonance. The overview includes the comparison and analysis of spectroscopy data with theoretical spectra as calculated for the impurity model and as obtained by DMFT, and the Kondo volume collapse calculation of the cerium alpha-gamma phase transition boundary, with its spectroscopic underpinnings.Comment: 32 pages, 11 figures, 151 references; paper for special issue of J. Phys. Soc. Jpn. on "Kondo Effect--40 Years after the Discovery

    Kondo engineering : from single Kondo impurity to the Kondo lattice

    Full text link
    In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The extension to a lattice is discussed. Emphasis is given on the fact that the occupation number nfn_f of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three (P,H,T)(P, H, T) phase diagrams are discussed: CeRu2_2Si2_2, CeRhIn5_5 and SmS

    Band Calculations for Ce Compounds with AuCu3_{3}-type Crystal Structure on the basis of Dynamical Mean Field Theory I. CePd3_{3} and CeRh3_{3}

    Full text link
    Band calculations for Ce compounds with the AuCu3_{3}-type crystal structure were carried out on the basis of dynamical mean field theory (DMFT). The auxiliary impurity problem was solved by a method named NCAf2f^{2}vc (noncrossing approximation including the f2f^{2} state as a vertex correction). The calculations take into account the crystal-field splitting, the spin-orbit interaction, and the correct exchange process of the f1→f0,f2f^{1} \rightarrow f^{0},f^{2} virtual excitation. These are necessary features in the quantitative band theory for Ce compounds and in the calculation of their excitation spectra. The results of applying the calculation to CePd3_{3} and CeRh3_{3} are presented as the first in a series of papers. The experimental results of the photoemission spectrum (PES), the inverse PES, the angle-resolved PES, and the magnetic excitation spectra were reasonably reproduced by the first-principles DMFT band calculation. At low temperatures, the Fermi surface (FS) structure of CePd3_{3} is similar to that of the band obtained by the local density approximation. It gradually changes into a form that is similar to the FS of LaPd3_{3} as the temperature increases, since the 4f4f band shifts to the high-energy side and the lifetime broadening becomes large.}Comment: 12 pasges, 13 figure

    Theory of the first-order isostructural valence phase transitions in mixed valence compounds YbIn_{x}Ag_{1-x}Cu_{4}

    Full text link
    For describing the first-order isostructural valence phase transition in mixed valence compounds we develop a new approach based on the lattice Anderson model. We take into account the Coulomb interaction between localized f and conduction band electrons and two mechanisms of electron-lattice coupling. One is related to the volume dependence of the hybridization. The other is related to local deformations produced by f- shell size fluctuations accompanying valence fluctuations. The large f -state degeneracy allows us to use the 1/N expansion method. Within the model we develop a mean-field theory for the first-order valence phase transition in YbInCu_{4}. It is shown that the Coulomb interaction enhances the exchange interaction between f and conduction band electron spins and is the driving force of the phase transition. A comparison between the theoretical calculations and experimental measurements of the valence change, susceptibility, specific heat, entropy, elastic constants and volume change in YbInCu_{4} and YbAgCu_{4} are presented, and a good quantitative agreement is found. On the basis of the model we describe the evolution from the first-order valence phase transition to the continuous transition into the heavy-fermion ground state in the series of compounds YbIn_{1-x}Ag_{x}Cu_{4}. The effect of pressure on physical properties of YbInCu_{4} is studied and the H-T phase diagram is found.Comment: 17 pages RevTeX, 9 Postscript figures, to be submitted to Phys.Rev.
    • …
    corecore