17 research outputs found

    Molecular characteristics of a novel recombinant of porcine epidemic diarrhea virus.

    Get PDF
    Porcine epidemic diarrhea (PED) is a contagious viral disease in pigs, caused by the coronavirus porcine epidemic diarrhea virus (PEDV). PEDV infection results in significant mortality in piglets in unvaccinated herds. Like many others RNA viruses, PEDV has high evolutionary rate and is prone to genetic mutations. In this study, we analyzed the complete genome sequence of the recently sequenced isolate PEDV/Belgorod/dom/2008. A recombination event in S gene of PEDV/Belgorod/dom/2008 was detected. Pairwise identity analysis of the whole genome sequences revealed that PEDV/Belgorod/dom/2008 is an intermediate between PEDV and transmissible gastroenteritis virus (TGEV) strains. These results can be used for further analysis of the evolutionary variability, prevalence, and epidemiology of the porcine epidemic diarrhea virus

    Complete Genome Sequence of a Porcine Epidemic Diarrhea Virus Isolated in Belgorod, Russia, in 2008.

    Get PDF
    We identified porcine epidemic diarrhea virus (PEDV) in stool samples from sick piglets in the Belgorod region of Russia. The complete coding genome sequence of 28,295 nucleotides (nt) of PEDV was generated. Compared to a prototype PEDV strain (DR13), an extreme number of mismatches in the S gene were revealed

    African Swine Fever Virus, Siberia, Russia, 2017.

    Get PDF
    African swine fever (ASF) is arguably the most dangerous and emerging swine disease worldwide. ASF is a serious problem for the swine industry. The first case of ASF in Russia was reported in 2007. We report an outbreak of ASF in Siberia, Russia, in 2017

    Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins.

    Get PDF
    African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available, and progress is hindered by lack of knowledge concerning the extent of ASF virus (ASFV) strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Previously, we demonstrated that ASFV serotype-specific proteins CD2v (EP402R) and/or C-type lectin (EP153R) are important for protection against homologous ASF infection. Here, we identified six discrete T-cell epitope regions present on CD2v and C-type lectin using IFN-γ ELISpot assay and PBMCs from ASF immune animals, indicating cellular reactivity to these proteins in the context of ASFV infection and protective immunity. Notably, three of the epitope regions map to previously described serotype-specific signature regions of these proteins. Improved understanding of ASFV protective antigens, relevant epitopes and their diversity in nature will facilitate ASFV subunit vaccine design and development

    Identifying climate-sensitive infectious diseases in animals and humans in Northern regions.

    Get PDF
    BACKGROUND: General knowledge on climate change effects and adaptation strategies has increased significantly in recent years. However, there is still a substantial information gap regarding the influence of climate change on infectious diseases and how these diseases should be identified. From a One Health perspective, zoonotic infections are of particular concern. The climate in Northern regions is changing faster than the global average. This study sought to identify climate-sensitive infectious diseases (CSIs) of relevance for humans and/or animals living in Northern regions. Inclusion criteria for CSIs were constructed using expert assessments. Based on these principles, 37 potential CSIs relevant for Northern regions were identified. A systematic literature search was performed in three databases using an explicit stepwise approach to determine whether the literature supports selection of these 37 potential CSIs. RESULTS: In total, 1275 nominated abstracts were read and categorised using predefined criteria. Results showed that arthropod vector-borne diseases in particular are recognised as having potential to expand their distribution towards Northern latitudes and that tick-borne encephalitis and borreliosis, midge-borne bluetongue and the parasitic infection fasciolosis can be classified as climate-sensitive. Many of the other potential CSIs considered are affected by extreme weather events, but could not be clearly classified as climate-sensitive. An additional literature search comparing awareness of climate influences on potential CSIs between 1997-2006 and 2007-2016 showed an increase in the number of papers mentioning effects of climate change. CONCLUSIONS: The four CSIs identified in this study could be targeted in a systematic surveillance programme in Northern regions. It is evident that climate change can affect the epidemiology and geographical range of many infectious diseases, but there were difficulties in identifying additional CSIs, most likely because other factors may be of equal or greater importance. However, climate-ecological dynamics are constantly under change, and therefore diseases may fall in or out of the climate-sensitive definition over time. There is increasing awareness in the literature of the effects of climate change on infectious diseases over time

    Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes

    No full text
    Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment

    Genetic and antigenic diversity of African swine fever virus.

    Get PDF
    African swine fever virus (ASFV) is the only known DNA arbovirus, and the ability to replicate efficiently in both insect and mammalian cells is encoded in its viral genome. Despite having a relatively low overall genomic mutation rate, ASFV demonstrates genetic diversity in certain genes and complexity in gene content in other genomic regions, indicating that ASFV may exploit multiple mechanisms for diversification and acquire new phenotype characteristics. ASFV antigenic diversity is reflected in the ability to type cross-protective viruses together into serogroups, largely based on antibody-mediated inhibition of hemadsorption. Here we review ASFV genetic signatures of ASFV type specificity, genome variability, and the hemadsorption as a means of defining virus antigenic type, and how these may be used toward defining antigenic and phenotypic diversity that is problematic for development of vaccine solutions to ASF

    Comparative Analysis of African Swine Fever Virus Genotypes and Serogroups

    No full text
    African swine fever virus (ASFV) causes highly lethal hemorrhagic disease among pigs, and ASFV’s extreme antigenic diversity hinders vaccine development. We show that p72 ASFV phylogenetic analysis does not accurately define ASFV hemadsorption inhibition assay serogroups. Thus, conventional ASFV genotyping cannot discriminate between viruses of different virulence or predict efficacy of a specific ASFV vaccine

    Characterization of African Swine Fever Virus Caucasus Isolate in European Wild Boars

    No full text
    Since 2007, African swine fever has spread from the Caucasus region. To learn more about the dynamics of the disease in wild boars (Sus scrofa), we conducted experiments by using European wild boars. We found high virulence of Caucasus isolates limited potential for establishment of endemicity
    corecore