15 research outputs found

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe

    Differences in acoustic impedance of fresh and embedded human trabecular bone samples - Scanning acoustic microscopy and numerical evaluation

    No full text
    Trabecular bone samples are traditionally embedded and polished for scanning acoustic microscopy (SAM). The effect of sample processing, including dehydration, on the acoustic impedance of bone is unknown. In this study, acoustic impedance of human trabecular bone samples (n = 8) was experimentally assessed before (fresh) and after embedding using SAM and two-dimensional (2-D) finite-difference time domain simulations. Fresh samples were polished with sandpapers of different grit (P1000, P2500, and P4000). Experimental results indicated that acoustic impedance of samples increased significantly after embedding [mean values 3.7 MRayl (fresh), 6.1 MRayl (embedded), p < 0.001]. After polishing with different papers, no significant changes in acoustic impedance were found, even though higher mean values were detected after polishing with finer (P2500 and P4000) papers. A linear correlation (r = 0.854, p < 0.05) was found between the acoustic impedance values of embedded and fresh bone samples polished using P2500 SiC paper. In numerical simulations dehydration increased the acoustic impedance of trabecular bone (38%), whereas changes in surface roughness of bone had a minor effect on the acoustic impedance (-1.56%/0.1 μm). Thereby, the numerical simulations corroborated the experimental findings. In conclusion, acoustic impedance measurement of fresh trabecular bone is possible and may provide realistic material values similar to those of living bone

    Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes

    No full text
    Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 × 10 cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound

    Characterizing human subchondral bone properties using near-infrared (NIR) spectroscopy

    No full text
    Degenerative joint conditions are often characterized by changes in articular cartilage and subchondral bone properties. These changes are often associated with subchondral plate thickness and trabecular bone morphology. Thus, evaluating subchondral bone integrity could provide essential insights for diagnosis of joint pathologies. This study investigates the potential of optical spectroscopy for characterizing human subchondral bone properties. Osteochondral samples (n = 50) were extracted from human cadaver knees (n = 13) at four anatomical locations and subjected to NIR spectroscopy. The samples were then imaged using micro-computed tomography to determine subchondral bone morphometric properties, including: plate thickness (Sb.Th), trabecular thickness (Tb.Th), volume fraction (BV/TV), and structure model index (SMI). The relationship between the subchondral bone properties and spectral data in the 1 (650-950 nm), 2 (1100-1350 nm) and 3 (1600-1870 nm) optical windows were investigated using partial least squares (PLS) regression multivariate technique. Significant correlations (p < 0.0001) and relatively low prediction errors were obtained between spectral data in the 1 optical window and Sb.Th (R = 92.3%, error = 7.1%), Tb.Th (R = 88.4%, error = 6.7%), BV/TV (R = 83%, error = 9.8%) and SMI (R = 79.7%, error = 10.8%). Thus, NIR spectroscopy in the 1 tissue optical window is capable of characterizing and estimating subchondral bone properties, and can potentially be adapted during arthroscopy

    Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements – towards improved ultrasound bone diagnostics

    No full text
    <p>Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical <i>in vivo</i> ultrasound methodologies.</p

    Regular chondrocyte spacing is a potential cause for coherent ultrasound backscatter in human articular cartilage

    No full text
    The potential of quantitative ultrasound (QUS) to assess the regular cellular spacing in the superficial cartilage zones was investigated experimentally and numerically. Nine osteochondral samples, extracted from two human cadaver knee joints, were measured using a 50-MHz ultrasound scanning device and evaluated using Mankin score. Simulated backscattered power spectra from models with an idealized cell alignment exhibited a pronounced frequency peak. From the peak, cell spacing in the range between 15 and 40 μm between cell layers was detected with an average error of 0.2 μm. The mean QUS-based cell spacing was 28.3 ± 5.3 μm. Strong correlation (R= 0.59, p ≤ 0.001) between spacing estimates from light microscopy (LM) and QUS was found for samples with Mankin score ≤3. For higher scores, QUS-based spacing was significantly higher (p ≤ 0.05) compared to LM-based spacing. QUS-based spacing estimates together with other QUS parameters may serve as future biomarkers for detecting early signs of osteoarthrosis

    Species-independent modeling of high-frequency ultrasound backscatter in hyaline cartilage

    No full text
    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R\ua0=\ua00.51, p\ua070°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage\ua0structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter
    corecore