30 research outputs found

    Inhibition of Insulin‐Like Growth Factor 1 Receptor Enhances the Efficacy of Sorafenib in Inhibiting Hepatocellular Carcinoma Cell Growth and Survival

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common primary cancer and second largest cause of cancer‐related death worldwide. The first‐line oral chemotherapeutic agent sorafenib only increases survival in patients with advanced HCC by less than 3 months. Most patients with advanced HCC have shown limited response rates and survival benefits with sorafenib. Although sorafenib is an inhibitor of multiple kinases, including serine/threonine‐protein kinase c‐Raf, serine/threonine‐protein kinase B‐Raf, vascular endothelial growth factor receptor (VEGFR)‐1, VEGFR‐2, VEGFR‐3, and platelet‐derived growth factor receptor ÎČ, HCC cells are able to escape from sorafenib treatment using other pathways that the drug insufficiently inhibits. The aim of this study was to identify and target survival and proliferation pathways that enable HCC to escape the antitumor activity of sorafenib. We found that insulin‐like growth factor 1 receptor (IGF1R) remains activated in HCC cells treated with sorafenib. Knockdown of IGF1R sensitizes HCC cells to sorafenib treatment and decreases protein kinase B (AKT) activation. Overexpression of constitutively activated AKT reverses the effect of knockdown of IGF1R in sensitizing HCC cells to treatment with sorafenib. Further, we found that ceritinib, a drug approved by the U.S. Food and Drug Administration for treatment of non‐small cell lung cancer, effectively inhibits the IGF1R/AKT pathway and enhances the inhibitory efficacy of sorafenib in human HCC cell growth and survival in vitro, in a xenograft mouse model and in the c‐Met/ÎČ‐catenin‐driven HCC mouse model. Conclusion: Our study provides a biochemical basis for evaluation of a new combination treatment that includes IGF1R inhibitors, such as ceritinib and sorafenib, in patients with HCC

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    ABL2 Promotes Alcohol-Associated Liver Disease via PPAR Gamma Regulation

    No full text
    Alcohol-associated liver disease (AALD) is an umbrella term for a spectrum of diseases resulting from chronic alcohol (e.g. ethanol) abuse ranging in severity from reversible conditions such as alcohol-induced steatosis to advanced and largely irreversible liver pathologies including alcoholic steatohepatitis (ASH), alcoholic hepatitis (AH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). AALD is one of the primary causes of chronic liver disease worldwide and accounts for 44% of liver disease deaths in the United States. Drinking rates, both in the United States and globally, have increased year over year for the past three decades, a trend which has resulted in significantly increased incidences of AALD. Despite the progress in the AALD field, the molecular mechanisms governing the progression from reversible forms of AALD to more advanced stages are still poorly characterized. Aside from alcohol abstinence and liver transplantation, there are currently no effective FDA-approved pharmacological or nutritional therapies for treating patients with AALD. Consequently, understanding the underlying molecular mechanisms of AALD pathogenesis may lead to novel therapeutic strategies that are desperately needed. ABL1 and ABL2 are highly conserved non-receptor tyrosine kinases which participate in a diverse set of cellular functions including mitosis, adhesion, differentiation, and stress response. While sharing similar structures and substrates, ABL1 and ABL2 are functionally redundant but individually necessary to normal development and homeostasis. The ABL kinases have been implicated in a number of liver pathologies, including ischemia/reperfusion injury, hepatic fibrosis, NAFLD, and HCC, suggesting a central role for this family of proteins in liver disease pathogenesis. However, despite the fact that activated ABL kinases have been shown to directly interact with molecules implicated in hepatocyte and stellate cell response to alcohol and oxidative stress, the roles of the ABL kinases in AALD have never been explored. To this end, we sought to investigate the contributions of the ABL kinases in murine models of alcoholism and discovered alcohol feeding results in significant activation of ABL1 and ABL2 in the liver. Analysis of liver tissue from healthy donors and AH patients also revealed significant activation of the ABL kinases, suggesting a potential role in AALD pathogenesis. To further characterize the potential roles of the ABL kinases in AALD, we generated transgenic hepatocyte-specific knockouts of Abl1 and Abl2 and subjected them to alcohol treatment. Interestingly, the hepatic deletion of Abl2 ameliorated liver injury and steatosis when compared to wild-type alcohol-fed mice. Gene set enrichment analyses revealed significant down regulation of PPAR signaling which was further confirmed using an in vitro system of hepatocyte alcohol exposure. Affirming our in vivo findings, we discovered that both genetic and pharmacologic inhibition of ABL2 attenuates alcohol-induced steatosis in a PPAR gamma-dependent manner. We further determined that alcohol-induced PPAR gamma may be regulated by HIF1 alpha, a master regulator of hypoxic response, in an ABL2-dependent manner. To our knowledge, this is the first direct assessment of the ABL kinases in AALD and the first to demonstrate functional relationships between ABL2 and PPAR gamma as well as ABL2 and HIF1 alpha. Our data suggest ABL2 represents a novel and promising target for AALD treatment, potentially providing a much needed therapeutic option for this often forgotten patient population

    Targeting Suppressor of Variegation 3-9 Homologue 2 (SUV39H2) in Acute Lymphoblastic Leukemia (ALL)

    No full text
    Although recent progress in understanding the biology and optimizing the treatment of acute lymphoblastic leukemia (ALL) has improved cure rates of childhood ALL to nearly 90%, the cure rate in adult ALL remains less than 50%. The poor prognosis in adult ALL has in part been attributed to larger proportion of high-risk leukemia showing drug resistance. Thus, identifying novel therapeutic targets in ALL is needed for further improvements in treatment outcomes of adult ALL. Genetic aberration of chromatin-modifying molecules has been recently reported in subtypes of ALL, and targeting components of chromatin complexes has shown promising efficacy in preclinical studies. Suppressor of variegation 3-9 homologue 2 (SUV39H2), also known as KMT1B, is a SET-domain–containing histone methyltransferase that is upregulated in solid cancers, but its expression is hardly detectable in normal tissues. Here, we show that SUV39H2 is highly expressed in ALL cells but not in blood cells from healthy donors and also that SUV39H2 mRNA is expressed at significantly higher levels in bone marrow or blood cells from patients with ALL obtained at diagnosis compared with those obtained at remission (P = .007). In four ALL cell lines (Jurkat and CEM derived from T-ALL and RS4;11 and REH derived from B-ALL), SUV39H2 knockdown resulted in a significant decrease in cell viability (~77%, P < .001), likely through induction of apoptosis. On the other hand, SUV39H2 overexpression made cells more resistant to chemotherapy. We conclude that SUV39H2 is a promising therapeutic target and further investigation of this therapeutic approach in ALL is warranted

    Preclinical efficacy of Maternal Embryonic Leucine-zipper Kinase (MELK) inhibition in acute myeloid leukemia.

    No full text
    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients

    WT1 peptide vaccine in Montanide in contrast to poly ICLC, is able to induce WT1-specific immune response with TCR clonal enrichment in myeloid leukemia

    No full text
    Abstract Background The optimal strategy for vaccination to induce CD8+ T cell responses against WT1 is not known. Methods A pilot randomized study in HLA-A02+ patients to receive vaccination with WT1 in Montanide or in poly ICLC, a TLR3 agonist, to explore the novel immune adjuvant was conducted. Seven patients were randomized. Four patients received WT1 in Montanide, and three with WT1 in poly ICLC. Five patients were in morphologic remission and two had residual morphologic disease at the study entry. Results All patients finished the induction phase without any major toxicity except mild transient local injection reaction. One patient on the Montanide arm developed aseptic ulceration at two vaccine sites which healed without antibiotics. Three of 4 patients on the Montanide arm had a decreased expression of WT1 after WT1 vaccination, and two of them demonstrated generation of WT1-specific cytotoxic CD8+ T cell responses with biased TCR beta chain enrichment. In contrast, no obvious WT1-specific immune responses were detected in two patients on the poly ICLC arm, nor was there clonal enrichment by TCR alpha/beta sequencing; however, these patients did also have decreased WT1 expression and remained in remission several years after the initiation of treatment. Conclusions WT1 peptide vaccine with Montanide as an adjuvant induces detectable WT1-specific CD8+ T cell responses with clonal TCR enrichment, which may be capable of controlling leukemia recurrence in the setting of minimal residual disease. Poly ICLC may induce anti-leukemic activity in the absence of detectable WT1 specific CD8+ T cell responses. Trial registration NCT01842139, 7/3/2012 retrospectively registered; https://clinicaltrials.gov/ct2/show/NCT01842139

    Meiosis of anther culture regenerants in asparagus (Asparagus officinalis L.)

    No full text
    Pollen mother cells obtained from regenerated plants of asparagus (Asparagus officinalis L.), in a population composed exclusively of male plants, through the process of anther culture from the hybrid G27 X 22-8, were analyzed during meiosis. It was observed that, during theprocess of anther culture by organogenesis, the pollen mother cells of the regenerants had great genomic instability, as evidenced by disturbances in all the meiotic phases of the first and second division. Furthermore, structural chromosomal abnormalities, in addition to aneuploidy and polyploidy, were observed.<br>Foi analisada a meiose em cĂ©lulas mĂŁe de pĂłlen de plantas de aspargo (Asparagus officinalis L.) de uma população composta exclusivamente de plantas masculinas, obtidas atravĂ©s do processo de cultura de anteras do hĂ­brido G27 X 22-8. Foi observado que, durante o processo de cultura de anteras, via calogĂȘnese, as cĂ©lulas mĂŁe de pĂłlen dos regenerantes apresentaram grande instabilidade genĂŽmica, evidenciada por irregularidades nas fases de diacinese, assim como de metĂĄfase, anĂĄfase, telĂłfase da primeira e segunda divisĂŁo meiĂłtica. AlĂ©m disto, o processo originou anormalidades cromossĂŽmicas estruturais em adição Ă s aneuploidias e poliploidias
    corecore