28 research outputs found

    No increase of serum neurofilament light in relapsing-remitting multiple sclerosis patients switching from standard to extended-interval dosing of natalizumab

    Get PDF
    BACKGROUND: Accumulating evidence supports the efficacy of administering natalizumab (NZ) with extended-interval dosing (EID) in patients with relapsing-remitting multiple sclerosis (RRMS). OBJECTIVES: We switched NZ dosing from 4-week to 6-week intervals in patients with RRMS, and investigated the effect on serum neurofilament light chain (sNfL) concentrations. METHODS: We included two cohorts of patients with RRMS treated with NZ: one received the standard-interval dosing (4 weeks) at baseline, and were switched to 6-week intervals (EID4-6, N = 45). The other cohort received EID (5- or 6-week intervals) both at baseline and during follow-up (EID5/6, N = 25). Serum samples were collected in the EID4-6 cohort at every NZ infusion, for 12 months. The primary outcome was the change in sNfL concentrations after switching to EID. RESULTS: The baseline mean sNfL concentration in the EID4-6 cohort was 10.5 ng/L (standard deviation (SD) = 6.1), and it remained unchanged at 12 months. Moreover, individual sNfL concentrations did not change significantly after extending the NZ dosing intervals. In addition, the EID4-6 and EID5/6 cohorts had similar baseline sNfL concentrations. CONCLUSION: We concluded that extending the NZ dosing interval did not increase axonal damage, as determined with sNfL, in patients with RRMS

    Intrathecal kappa free light chain synthesis is associated with worse prognosis in relapsing-remitting multiple sclerosis

    Get PDF
    BACKGROUND: While kappa free light chain (KFLC) index has become a useful diagnostic biomarker in multiple sclerosis (MS), its prognostic properties are less explored. B cells play a crucial role in MS pathogenesis, but the impact from increased intrathecal production of immunoglobulins and KFLC remains to be determined. Recently, it has become evident that insidious worsening is not confined to progressive MS but is also common in relapsing-remitting MS (RRMS), a feature known as progression independent of relapse activity (PIRA). METHODS: We retrospectively identified 131 patients with clinically isolated syndrome or early RRMS who had determined KFLC index as part of their diagnostic workup. Demographic and clinical data were extracted from the Swedish MS registry. Associations of baseline KFLC index with evidence of disease activity (EDA) and PIRA were investigated in multivariable cox proportional hazards regression models. RESULTS: KFLC index was significantly higher in PIRA (median 148.5, interquartile range [IQR] 106.9-253.5) compared with non-PIRA (78.26, IQR 28.93-186.5, p = 0.009). In a multivariable cox regression model adjusted for confounders, KFLC index emerged as an independent risk factor for PIRA (adjusted hazard ratio [aHR] 1.005, 95% confidence interval [CI] 1.002-1.008, p = 0.002). Dichotomized by the cut-off value KFLC index > 100, patients with KFLC index > 100 had an almost fourfold increase in the risk for developing PIRA. KFLC index was also predictive of evidence of disease activity during follow-up. CONCLUSIONS: Our data indicate that high KFLC index at baseline is predictive of PIRA, EDA-3, and overall worse prognosis in MS

    A five-year observational prospective mono-center study of the efficacy of alemtuzumab in a real-world cohort of patients with multiple sclerosis

    Get PDF
    BackgroundAlemtuzumab (ALZ) is a pulsed immune reconstitution therapy for multiple sclerosis (MS).ObjectiveTo assess basic characteristics, therapeutic effects, and prognostic biomarkers on clinical and imaging parameters of disease activity for relapsing–remitting MS (RRMS) patients selected for ALZ, in a real-world long-term setting.MethodsFifty-one RRMS patients [female = 31; mean age 36 (standard deviation 7.1) years; median expanded disability status scale (EDSS) 2 (interquartile range (IQR) 1.5)] initiating ALZ treatment, were consecutively included. Patients were assessed at baseline and thereafter annually for 5 years with clinical measures, symbol digit modality test (SDMT), and magnetic resonance imaging (MRI). Concentrations of glial fibrillary acidic protein (GFAP), reflecting astrogliosis, and neurofilament light (NfL), reflecting axonal damage, were measured in cerebrospinal fluid (CSF) and serum samples collected at baseline and after 2 years in CSF, and annually in serum. Control subjects were symptomatic controls (SCs, n = 27), who were examined at baseline and after 5 years without evidence of neurological disease.ResultsWhile the mean annualized relapse rate was significantly reduced from baseline at each year of follow-up, disability was essentially maintained at a median EDSS of 1.5 and IQR between 1.13 and 2.25. New MRI activity was recorded in 26 patients (53%) over 5 years. The proportion of patients who achieved no evidence of disease activity (NEDA-3), 6-months confirmed disability worsening (CDW), and 6-months confirmed disability improvement (CDI) at 5 years were 33, 31, and 31%, respectively. The SDMT score was reduced for patients (p < 0.001), but unchanged for SCs. ALZ treatment did not change GFAP levels, whereas there was a significant decrease for RRMS patients in median CSF and serum NfL levels at follow-up [CSF month 24: 456 pg./mL (IQR 285.4) (p = 0.05); serum month 24: 6.7 pg/mL (IQR 4.7) (p < 0.01); serum month 60: 7.2 pg/mL (IQR 4.7) (p < 0.01)], compared to baseline [CSF: 1014 pg/mL (IQR 2832.5); serum 8.6 pg/mL (IQR 17.4)].ConclusionIn this real-world mono-center population, we observed a progression-free survival of 69%, cumulative NEDA-3 of 33%, and reduced NfL levels, over a five-year follow-up. This confirms ALZ as an effective pulsed immune reconstitution therapy that significantly reduces neuro axonal loss, and therefore has the potential to reduce long-term neurological disability. ALZ did not appear to affect astrogliosis

    High Interferon-γ Uniquely in Vδ1 T Cells Correlates with Markers of Inflammation and Axonal Damage in Early Multiple Sclerosis

    Get PDF
    We have identified a population of T lymphocytes in peripheral blood, Vδ1 TCRγδ T lymphocytes, which unexpectedly was uniquely expressing high production of interferon-γ in newly diagnosed, untreated multiple sclerosis (MS) patients. IFN-γ production in this population distinctly correlated to parameters of clinical disease activity, inflammation, and neuronal damage. These Vδ1 T lymphocytes belong to a population of innate T lymphocytes that recognize antigen in the context of CD1d/CD1c and which include reactivity to the myelin glycosphingolipid sulfatide. Importantly, patients treated with natalizumab, blocking leukocyte transmigration to central nervous system, had completely normalized levels of interferon-γ-producing Vδ1 T lymphocytes. A biomarker and early sign of demyelinating disease in MS is much warranted and would help identify immunopathogenesis and prognosis of disease as well as monitor success with adequate treatment. The present study identifies the Vδ1 T lymphocytes as an early marker of MS and a possible link to understanding the disease etiology

    Blood and CSF biomarkers for investigation of the immunopathogenesis of relapse in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). MS usually starts with a relapsing-remitting course (RRMS) that later converts into a secondary progressive phase (SPMS). While inflammation is considered predominating in RRMS, neurodegenerative processes are probably more important in SPMS. The pathophysiology of MS includes autoreactive inflammatory cells that invade the CNS, causing demyelination, oligodendrocyte loss, axonal damage, astrocyte activation and subsequently gliotic scars. Over the last decade the importance of neuronal/axonal damage has been re-discovered. Although, most extensive during progressive MS, it is also an early phenomenon and can be noticed already soon after MS onset. It is the main cause of CNS atrophy and irreversible disability in MS. Several studies indicate that MS immunomodulatory therapy reduces this process, at least during RRMS. The most apparent clinical effect of MS therapy is relapse reduction. The aim of this thesis was to investigate the relationship between inflammation, neuropathological processes and the clinical course of MS in order to identify biomarkers that could be useful for monitoring disease activity and therapy efficacy. The pathophysiological mechanisms behind clinical relapse were explored, including the possible role of T-cell mediated cytotoxicity. Patients with RRMS or SPMS were included and healthy blood donors served as controls. Serum and cerebrospinal fluid (CSF) were obtained at relapse, remission or progression. A sub-group of RRMS patients with acute relapse were followed-up repeatedly 5 and 15 weeks after relapse onset. Pro- and antiinflammatory cytokines, neurofilament light chain protein (NFL), a marker of axonal damage and glial fibrillary acidic protein (GFAP), an astrogliosis marker were analysed in CSF. T-cell mediated cytotoxicity was investigated by analysing granzyme A and B in serum and CSF and by mRNA gene expression analysis of peripheral T-cells. NFL in CSF was increased in all MS patients and showed a 10-fold increase during clinical relapse in relation to patients in remission and progression. The levels peaked after five weeks and were sustained for 15 weeks. CSF-levels of GFAP had a strong correlation to the EDSS in MS-patients, with the strongest correlation in the SPMS group. IL-6 in CSF was higher in RRMS patients than SPMS and controls. CCL2 in CSF was lower in RRMS patients with the lowest level at ongoing relapse compared with controls. Granzyme A and B were increased in CSF at acute relapse and increased level of granzyme A was sustained for up to 3 months. Increased levels of NFL indicate a continuous axonal damage throughout the clinical course of MS with the most extensive damage during acute relapses. Increased levels of GFAP in MS, with a strong correlation to increasing disability, indicate that astrogliosis is more prominent during clinical progression. While demyelination is considered the pathophysiological hallmark of relapse development, our data suggests that axonal damage may be important in this process. Further, the change in the CSF levels of inflammatory markers (IL-6, CCL2) during relapses supports a relationship between inflammation and axonal damage. We also demonstrate that T-cell cytotoxicity within the CNS/CSF compartment might participate in the immunopathogenesis of clinical relapses. Prolonged increase of NFL and granzyme A levels in CSF after a relapse support an ongoing immunological attack even after apparent clinical remission suggesting a dissociation between immunological and clinical remission. In conclusion, NFL appears to be a marker for relapse and GFAP for clinical progression. Although our data suggests that these markers might be useful in monitoring disease activity and MS therapies, further studies are needed. Intense treatment of relapse and reduction in relapse frequency during immunomodulatory treatments probably decrease axonal damage which should be beneficial for a positive long term outcom

    A Sensitive Method for Detecting Peptide-specific CD4+ T Cell Responses in Peripheral Blood from Patients with Myasthenia Gravis

    No full text
    Myasthenia gravis (MG) is an autoimmune neurological disorder typified by skeletal muscle fatigue and most often production of autoantibodies against the nicotinic acetylcholine receptor (AChR). The present study was undertaken to assess the extent of AChR-peptide recognition in MG patients using co-culturing (DC:TC) of autologous monocyte-derived dendritic cells (moDCs) and highly enriched CD4+ T cells from the blood as compared to the traditional whole peripheral blood mononuclear cell (PBMC) cultures. We found that the DC:TC cultures were highly superior to the PBMC cultures for detection of reactivity toward HLA-DQ/DR-restricted AChR-peptides. In fact, whereas DC:TC cultures identified recognition in all MG patients the PBMC cultures failed to detect responsiveness in around 40% of the patients. Furthermore, reactivity to multiple peptides was evident in DC:TC cultures, while PBMC cultures mostly exhibited reactivity to a single peptide. No healthy control (HC) CD4+ T cells responded to the peptides in either culture system. Interestingly, whereas spontaneous production of IFNÎł and IL-17 was observed in the DC:TC cultures from MG patients, recall responses to peptides enhanced IL-10 production in 9/13 MG patients, while little increase in IFNÎł and IL-17 was seen. HCs did not produce cytokines to peptide stimulations. We conclude that the DC: TC culture system is significantly more sensitive and better identifies the extent of responsiveness in MG patients to AChR-peptides than traditional PBMC cultures

    Neuronal antibodies in adult patients with new-onset seizures : A prospective study

    No full text
    Objectives Immunotherapy in addition to antiepileptic drugs can improve seizure freedom rates in autoimmune epilepsy, highlighting the importance of early diagnosis. A diagnosis of autoimmune epilepsy can be supported by presence of serum antibodies to neuronal antigens. We asked how often neuronal antibodies are found in the serum of unselected adult patients with new-onset seizures and whether such testing could improve detection of autoimmune epilepsy. Material and Methods We included 44 patients over the age of 25 presenting after at least one unprovoked seizure to the Neurology Clinic at Sahlgrenska University Hospital, Gothenburg, Sweden. The median time between the first-ever seizure in life and the serum sampling was 50 days (range 22-11,000). Antibody testing in serum was performed according to the manufacturer's instructions. The patients were followed for at least 1 year. Results Epilepsy could be diagnosed already at the first visit in 21/44 patients (47.7%). Two patients (4.5%) were positive for neuronal antibodies: one against contactin-associated protein 2 (CASPR-2) and one against glutamate acid decarboxylase (GAD). Three patients (6.7%) displayed very weak immunoreactivity that was deemed clinically insignificant. One of the antibody-positive patients had only a single seizure. The other had a focal cortical dysplasia and was seizure-free on levetiracetam. None of the five patients with antibodies or immunoreactivity displayed any feature of autoimmune epilepsy. Conclusions We conclude that indiscriminate testing in patients presenting to a first seizure clinic with new-onset seizures or epilepsy is unlikely to improve detection of autoimmune epilepsy

    Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis.

    No full text
    The major intermediate cytoskeletal protein of astrocytes, glial fibrillary acidic protein (GFAP), and that of axons, neurofilament light protein (NFL), may both be released into the cerebrospinal fluid (CSF) during pathological processes in the central nervous system (CNS). We investigated GFAP and NFL levels in CSF as possible biomarkers for progression in multiple sclerosis (MS). Patients with relapsing-remitting MS (RRMS, n = 15) or secondary progressive MS (SPMS, n = 10) and healthy control subjects (n = 28) were examined twice with an interval of 8-10 years apart. Neurological deficits were scored with the Expanded Disability Status Scale (EDSS). GFAP and NFL levels were determined in CSF by enzyme-linked immunosorbent assay (ELISA). GFAP levels and NFL levels correlated with age (r and r (s) = 0.50, p = 0.006). Adjusting for age, MS patients had increased GFAP levels compared with controls (p = 0.03) and GFAP levels correlated with neurological disability (EDSS, r = 0.51, p < 0.05) and disease progression [Multiple Sclerosis Severity Score (MSSS), r = 0.47, p < 0.05]. The mean annual increase of GFAP was 6.5 ng/L for controls, 8.1 ng/L for RRMS patients, and 18.9 ng/L for SPMS patients. GFAP level at the first examination had predictive value for neurological disability 8-10 years later (EDSS, r = 0.45, p < 0.05) but not for EDSS increase between the examinations. NFL levels were not significantly increased in MS patients compared with controls and had no relationship to disability or progression and no prognostic value for disability development. GFAP, a marker for astrogliosis, is a potential biomarker for MS progression and may have a role in clinical trials for assessing the impact of therapies on MS progression
    corecore