21 research outputs found

    Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure

    Get PDF
    Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Cognitive training and remediation interventions for substance use disorders: a Delphi consensus study

    No full text
    Aims: Substance use disorders (SUD) are associated with cognitive deficits that are not always addressed in current treatments, and this hampers recovery. Cognitive training and remediation interventions are well suited to fill the gap for managing cognitive deficits in SUD. We aimed to reach consensus on recommendations for developing and applying these interventions. Design, Setting and Participants: We used a Delphi approach with two sequential phases: survey development and iterative surveying of experts. This was an on-line study. During survey development, we engaged a group of 15 experts from a working group of the International Society of Addiction Medicine (Steering Committee). During the surveying process, we engaged a larger pool of experts (n = 54) identified via recommendations from the Steering Committee and a systematic review. Measurements: Survey with 67 items covering four key areas of intervention development: targets, intervention approaches, active ingredients and modes of delivery. Findings: Across two iterative rounds (98% retention rate), the experts reached a consensus on 50 items including: (i) implicit biases, positive affect, arousal, executive functions and social processing as key targets of interventions; (ii) cognitive bias modification, contingency management, emotion regulation training and cognitive remediation as preferred approaches; (iii) practice, feedback, difficulty-titration, bias modification, goal-setting, strategy learning and meta-awareness as active ingredients; and (iv) both addiction treatment work-force and specialized neuropsychologists facilitating delivery, together with novel digital-based delivery modalities. Conclusions: Expert recommendations on cognitive training and remediation for substance use disorders highlight the relevance of targeting implicit biases, reward, emotion regulation and higher-order cognitive skills via well-validated intervention approaches qualified with mechanistic techniques and flexible delivery options
    corecore