91 research outputs found

    Ladder operators for subtle hidden shape invariant potentials

    Full text link
    Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance.Comment: 9 pages, based on the talk given at International Conference Progress in Supersymmetric Quantum Mechanics (PSQM03), Valladolid, Spain, 15-19 July, 2003, to appear in a Special Issue of J. Phys. A: Math. Ge

    Exactly solvable models of supersymmetric quantum mechanics and connection to spectrum generating algebra

    Get PDF
    For nonrelativistic Hamiltonians which are shape invariant, analytic expressions for the eigenvalues and eigenvectors can be derived using the well known method of supersymmetric quantum mechanics. Most of these Hamiltonians also possess spectrum generating algebras and are hence solvable by an independent group theoretic method. In this paper, we demonstrate the equivalence of the two methods of solution by developing an algebraic framework for shape invariant Hamiltonians with a general change of parameters, which involves nonlinear extensions of Lie algebras.Comment: 12 pages, 2 figure

    Method for Generating Additive Shape Invariant Potentials from an Euler Equation

    Get PDF
    In the supersymmetric quantum mechanics formalism, the shape invariance condition provides a sufficient constraint to make a quantum mechanical problem solvable; i.e., we can determine its eigenvalues and eigenfunctions algebraically. Since shape invariance relates superpotentials and their derivatives at two different values of the parameter aa, it is a non-local condition in the coordinate-parameter (x,a)(x, a) space. We transform the shape invariance condition for additive shape invariant superpotentials into two local partial differential equations. One of these equations is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow. The second equation provides the constraint that helps us determine unique solutions. We solve these equations to generate the set of all known \hbar-independent shape invariant superpotentials and show that there are no others. We then develop an algorithm for generating additive shape invariant superpotentials including those that depend on \hbar explicitly, and derive a new \hbar-dependent superpotential by expanding a Scarf superpotential.Comment: 1 figure, 4 tables, 18 page

    Survival of atraumatic restorative treatment (ART) sealants and restorations: a meta-analysis

    Get PDF
    The purpose of this study is to perform a systematic investigation plus meta-analysis into survival of atraumatic restorative treatment (ART) sealants and restorations using high-viscosity glass ionomers and to compare the results with those from the 2005 ART meta-analysis. Until February 2010, four databases were searched. Two hundred four publications were found, and 66 reported on ART restorations or sealant survival. Based on five exclusion criteria, two independent reviewers selected the 29 publications that accounted for the meta-analysis. Confidence intervals (CI) and or standard errors were calculated and the heterogeneity variance of the survival rates was estimated. Location (school/clinic) was an independent variable. The survival rates of single-surface and multiple-surface ART restorations in primary teeth over the first 2 years were 93% (CI, 91–94%) and 62% (CI, 51–73%), respectively; for single-surface ART restorations in permanent teeth over the first 3 and 5 years it was 85% (CI, 77–91%) and 80% (CI, 76–83%), respectively and for multiple-surface ART restorations in permanent teeth over 1 year it was 86% (CI, 59–98%). The mean annual dentine lesion incidence rate, in pits and fissures previously sealed using ART, over the first 3 years was 1%. No location effect and no differences between the 2005 and 2010 survival rates of ART restorations and sealants were observed. The short-term survival rates of single-surface ART restorations in primary and permanent teeth, and the caries-preventive effect of ART sealants were high. Clinical relevance: ART can safely be used in single-surface cavities in both primary and permanent teeth. ART sealants have a high caries preventive effect

    Cationic Host Defence Peptides:Potential as Antiviral Therapeutics

    Get PDF
    There is a pressing need to develop new antiviral treatments; of the 60 drugs currently available, half are aimed at HIV-1 and the remainder target only a further six viruses. This demand has led to the emergence of possible peptide therapies, with 15 currently in clinical trials. Advancements in understanding the antiviral potential of naturally occurring host defence peptides highlights the potential of a whole new class of molecules to be considered as antiviral therapeutics. Cationic host defence peptides, such as defensins and cathelicidins, are important components of innate immunity with antimicrobial and immunomodulatory capabilities. In recent years they have also been shown to be natural, broad-spectrum antivirals against both enveloped and non-enveloped viruses, including HIV-1, influenza virus, respiratory syncytial virus and herpes simplex virus. Here we review the antiviral properties of several families of these host peptides and their potential to inform the design of novel therapeutics

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore