154 research outputs found

    Are Anticapsular Antibodies the Primary Mechanism of Protection against Invasive Pneumococcal Disease?

    Get PDF
    BACKGROUND: Antibody to capsular polysaccharide has been the basis of several vaccines that offer protection against invasive disease from Streptococcus pneumoniae. The success of such vaccines has led to the inference that natural protection against invasive pneumococcal disease is largely conferred by anticapsular antibody. If this is so, one would expect that the decline in disease from different serotypes would vary significantly, and that the appearance of substantial concentrations of anticapsular antibodies would coincide temporally with the decline in age-specific incidence. METHODS AND FINDINGS: Using incidence data from the United States, we show that, on the contrary, the decline in incidence with age is quite similar for the seven most important serogroups, despite large differences in exposure in the population. Moreover, only modest increases in antibody concentration occur over the second and third years of life, a period in which serotype-specific incidence declines to less than 25% of its peak. We also present detailed data on the distribution of antibody concentrations in Israeli toddlers, which are consistent with the United States findings. The same conclusion is supported by new data on age-specific incidence in Finland, which is compared with published data on antibody acquisition in Finnish toddlers. CONCLUSION: We suggest some additional studies of the mechanisms of protection that could distinguish among potential alternative mechanisms, including acquired immunity to noncapsular antigens, maturation of nonspecific immune responses, or changes in anatomy or exposure

    Interleukin-17A Mediates Acquired Immunity to Pneumococcal Colonization

    Get PDF
    Although anticapsular antibodies confer serotype-specific immunity to pneumococci, children increase their ability to clear colonization before these antibodies appear, suggesting involvement of other mechanisms. We previously reported that intranasal immunization of mice with pneumococci confers CD4+ T cell–dependent, antibody- and serotype-independent protection against colonization. Here we show that this immunity, rather than preventing initiation of carriage, accelerates clearance over several days, accompanied by neutrophilic infiltration of the nasopharyngeal mucosa. Adoptive transfer of immune CD4+ T cells was sufficient to confer immunity to naΓ―ve RAG1βˆ’/βˆ’ mice. A critical role of interleukin (IL)-17A was demonstrated: mice lacking interferon-Ξ³ or IL-4 were protected, but not mice lacking IL-17A receptor or mice with neutrophil depletion. In vitro expression of IL-17A in response to pneumococci was assayed: lymphoid tissue from vaccinated mice expressed significantly more IL-17A than controls, and IL-17A expression from peripheral blood samples from immunized mice predicted protection in vivo. IL-17A was elicited by pneumococcal stimulation of tonsillar cells of children or adult blood but not cord blood. IL-17A increased pneumococcal killing by human neutrophils both in the absence and in the presence of antibodies and complement. We conclude that IL-17A mediates pneumococcal immunity in mice and probably in humans; its elicitation in vitro could help in the development of candidate pneumococcal vaccines
    • …
    corecore