2,881 research outputs found

    Impact of local stacking on the graphene-impurity interaction: theory and experiments

    Full text link
    We investigate the graphene-impurity interaction problem by combining experimental - scanning tunneling microscopy (STM) and spectroscopy (STS) - and theoretical - Anderson impurity model and density functional theory (DFT) calculations - techniques. We use graphene on the SiC(000-1)(2x2)_C reconstruction as a model system. The SiC substrate reconstruction is based on silicon adatoms. Graphene mainly interacts with the dangling bonds of these adatoms which act as impurities. Graphene grown on SiC(000-1)(2x2)_C shows domains with various orientations relative to the substrate so that very different local graphene/Si adatom stacking configurations can be probed on a given grain. The position and width of the adatom (impurity) state can be analyzed by STM/STS and related to its local environment owing to the high bias electronic transparency of graphene. The experimental results are compared to Anderson's model predictions and complemented by DFT calculations for some specific local environments. We conclude that the adatom resonance shows a smaller width and a larger shift toward the Dirac point for an adatom at the center of a graphene hexagon than for an adatom just on top of a C graphene atom.Comment: 13 pages, 6 figures, Accepted for publication in Phys. Rev.

    Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale

    Get PDF
    Graphene exhibits unconventional two-dimensional electronic properties resulting from the symmetry of its quasiparticles, which leads to the concepts of pseudospin and electronic chirality. Here we report that scanning tunneling microscopy can be used to probe these unique symmetry properties at the nanometer scale. They are reflected in the quantum interference pattern resulting from elastic scattering off impurities, and they can be directly read from its fast Fourier transform. Our data, complemented by theoretical calculations, demonstrate that the pseudospin and the electronic chirality in epitaxial graphene on SiC(0001) correspond to the ones predicted for ideal graphene.Comment: 4 pages, 3 figures, minor change

    A hybrid CA-PDE Model of chlamydia trachomatis infection in the female genital tract

    Get PDF
    Chlamydia trachomatis is amongst the most common sexually transmitted diseases in the world and when left untreated, may lead to serious sequelae particularly in women such as pelvic inflammatory disease, ectopic pregnancy and infertility. Currently, most mathematical modelling in the literature regarding Chlamydia is based on time dependent differential equations. The serious pathology associated with C. trachomatis occurs when the chlamydial infection ascends to the upper genital tract. But no modelling study has investigated the important spatial aspects of the disease. In this work, we include spatiotemporal considerations of the progression of chlamydial infection in the genital tract. This novel direction is achieved using cellular automata modelling with probabilistic decision processes. In this presentation, the modelling strategy will be described, as well as its relationship with existing models and the advances in understanding that are achieved with such a model. Such an approach provides valuable insights into disease progression and will lead to experimentally testable predictions and a basis for further investigation in this area

    Graphene on the C-terminated SiC (000 1ˉ\bar{1}) surface: An ab initio study

    Full text link
    The atomic and electronic structures of a graphene layer on top of the (2×2)(2\times2) reconstruction of the SiC (0001ˉ\bar{1}) surface are studied from ab initio calculations. At variance with the (0001) face, no C bufferlayer is found here. Si adatoms passivate the substrate surface so that the very first C layer presents a linear dispersion characteristic of graphene. A small graphene-substrate interaction remains in agreement with scanning tunneling experiments (F.Hiebel et al. {\it Phys. Rev. B} {\bf 78} 153412 (2008)). The stacking geometry has little influence on the interaction which explains the rotational disorder observed on this face.Comment: 4 pages, 3 figures, additional materia

    Using Spontaneous Emission of a Qubit as a Resource for Feedback Control

    Get PDF
    Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous values of the quadratures of the measured fluorescence field, we show that it is possible to stabilize permanently the qubit in any targeted state. Using a Josephson mixer as a phase-preserving amplifier, it was possible to reach a total measurement efficiency η\eta=35%, leading to a maximum of 59% of excitation and 44% of coherence for the stabilized states. The experiment demonstrates multiple-input multiple-output analog Markovian feedback in the quantum regime.Comment: Supplementary material can be found as an ancillary objec

    Synthesis and studies of new organic semiconductors based on furan moieties coming from biomass

    Get PDF
    Date du colloque : 08/2010International audienc

    Organic Semiconductors of biomass origin

    Get PDF
    • …
    corecore