131 research outputs found
Maintenance of Elective Patient Care at Berlin University Children's Hospital During the COVID-19 Pandemic
Background: In Germany, so far the COVID-19 pandemic evolved in two distinct waves, the first beginning in February and the second in July, 2020. The Berlin University Children's Hospital at Charité (BCH) had to ensure treatment for children not infected and infected with SARS-CoV-2. Prevention of nosocomial SARS-CoV-2 infection of patients and staff was a paramount goal. Pediatric hospitals worldwide discontinued elective treatments and established a centralized admission process.
Methods: The response of BCH to the pandemic adapted to emerging evidence. This resulted in centralized admission via one ward exclusively dedicated to children with unclear SARS-CoV-2 status and discontinuation of elective treatment during the first wave, but maintenance of elective care and decentralized admissions during the second wave. We report numbers of patients treated and of nosocomial SARS-CoV-2 infections during the two waves of the pandemic.
Results: During the first wave, weekly numbers of inpatient and outpatient cases declined by 37% (p < 0.001) and 29% (p = 0.003), respectively. During the second wave, however, inpatient case numbers were 7% higher (p = 0.06) and outpatient case numbers only 6% lower (p = 0.25), compared to the previous year. Only a minority of inpatients were tested positive for SARS-CoV-2 by RT-PCR (0.47% during the first, 0.63% during the second wave). No nosocomial infection of pediatric patients by SARS-CoV-2 occurred.
Conclusion: In contrast to centralized admission via a ward exclusively dedicated to children with unclear SARS-CoV-2 status and discontinuation of elective treatments, maintenance of elective care and decentralized admission allowed the almost normal use of hospital resources, yet without increased risk of nosocomial infections with SARS-CoV-2. By this approach unwanted sequelae of withheld specialized pediatric non-emergency treatment to child and adolescent health may be avoided
DMBT1 is upregulated in cystic fibrosis, affects ciliary motility, and is reduced by acetylcysteine
Background
Cystic fibrosis (CF) is the most common genetic disorder in the Caucasian population. Despite remarkable improvements in morbidity and mortality during the last decades, the disease still limits survival and reduces quality of life of affected patients. Moreover, CF still represents substantial economic burden for healthcare systems. Inflammation and infection already start in early life and play important roles in pulmonary impairment. The aim of this study is to analyze the potential role of DMBT1, a protein with functions in inflammation, angiogenesis, and epithelial differentiation, in CF.
Results
Immunohistochemically DMBT1 protein expression was upregulated in lung tissues of CF patients compared to healthy controls. Additionally, pulmonary expression of Dmbt1 was approximately 6-fold increased in an established transgenic mouse model of CF-like lung disease (ENaC tg) compared to wild-type mice as detected by qRT-PCR. Since acetylcysteine (ACC) has been shown to reduce inflammatory markers in the airways, its potential influence on DMBT1 expression was analyzed. A549 cells stably transfected with an expression plasmid encoding the largest (8kb) DMBT1 variant (DMBT1+ cells) or an empty vector control (DMBT1- cells) and incubated with ACC both showed significantly reduced DMBT1 concentrations in the culture medium (p = 0.0001). To further elucidate the function of DMBT1 in pulmonary airways, respiratory epithelial cells were examined by phase contrast microscopy. Addition of human recombinant DMBT1 resulted in altered cilia motility and irregular beat waves (p < 0.0001) suggesting a potential effect of DMBT1 on airway clearance.
Conclusions
DMBT1 is part of inflammatory processes in CF and may be used as a potential biomarker for CF lung disease and a potential tool to monitor CF progression. Furthermore, DMBT1 has a negative effect on ciliary motility thereby possibly compromising airway clearance. Application of ACC, leading to reduced DMBT1 concentrations, could be a potential therapeutic option for CF patients
The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease
AbstractChronic lung disease remains the major cause of morbidity and mortality of cystic fibrosis (CF) patients. Cftr mutant mice developed severe intestinal obstruction, but did not exhibit the characteristic CF ion transport defects (i.e. deficient cAMP-dependent Cl− secretion and increased Na+ absorption) in the lower airways, and failed to develop CF-like lung disease. These observations led to the generation of transgenic mice with airway-specific overexpression of the epithelial Na+ channel (ENaC) as an alternative approach to mimic CF ion transport pathophysiology in the lung. Studies of the phenotype of βENaC-transgenic mice demonstrated that increased airway Na+ absorption causes airway surface liquid (ASL) depletion, reduced mucus transport and a spontaneous CF-like lung disease with airway mucus obstruction and chronic airway inflammation. Here, we summarize approaches that can be applied for studies of the complex in vivo pathogenesis and preclinical evaluation of novel therapeutic strategies in this model of CF lung disease
Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease
Background: Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells. Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice. Methods: Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. Results: AuNP were mainly found as singlets or small agglomerates of ≤ 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2±4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0±5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3±32.2% AuNP were on the epithelium and 58.3±41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5±4.8% AuNP were luminal, 21.4±14.2% within epithelial cells and 63.0±18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5±5.0% AuNP were luminal, 2.2±1.6% within epithelial cells and 82.8±0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. Conclusions: Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD
A multi-centre, randomized, controlled trial on coaching and telemonitoring in patients with cystic fibrosis: conneCT CF
Background: The extend of lung disease remains the most important prognostic factor for survival in patients with cystic fibrosis (CF), and lack of adherence is the main reason for treatment failure. Early detection of deterioration in lung function and optimising adherence are therefore crucial in CF care. We implement a randomized controlled trial to evaluate efficacy of telemonitoring of adherence, lung function, and health condition in combination with behavior change interventions using innovative digital technologies.
Methods: This is a multi-centre, randomized, controlled, non-blinded trial aiming to include 402 patients >= 12 years-of-age with CF. A standard-of-care arm is compared to an arm receiving objective, continuous monitoring of adherence to inhalation therapies, weekly home spirometry using electronic devices with data transmission to patients and caring physicians combined with video-conferencing, a self-management app and professional telephone coaching. The duration of the intervention phase is 18 months. The primary endpoint is time to the first protocol-defined pulmonary exacerbation. Secondary outcome measures include number of and time between pulmonary exacerbations, adherence to inhalation therapy, changes in forced expiratory volume in 1 s from baseline, number of hospital admissions, and changes in health-related quality of life. CF-associated medical treatment and care, and health care related costs will be assessed by explorative analysis in both arms.
Discussion: This study offers the opportunity to evaluate the effect of adherence interventions using telemedicine capable devices on adherence and lung health, possibly paving the way for implementation of telemedicine in routine care for patients with CF
Comparison of Oropharyngeal Microbiota from Children with Asthma and Cystic Fibrosis
A genuine microbiota resides in the lungs which emanates from the colonization by the oropharyngeal microbiota. Changes in the oropharyngeal microbiota might be the source of dysbiosis observed in the lower airways in patients suffering from asthma or cystic fibrosis (CF). To examine this hypothesis, we compared the throat microbiota from healthy children (n=62) and that from children with asthma (n=27) and CF (n=57) aged 6 to 12 years using 16S rRNA amplicon sequencing. Our results show high levels of similarities between healthy controls and children with asthma and CF revealing the existence of a core microbiome represented by Prevotella, Streptococcus, Neisseria, Veillonella, and Haemophilus. However, in CF, the global diversity, the bacterial load, and abundances of 53 OTUs were significantly reduced, whereas abundances of 6 OTUs representing opportunistic pathogens such as Pseudomonas, Staphylococcus, and Streptococcus were increased compared to those in healthy controls controls and asthmatics. Our data reveal a core microbiome in the throat of healthy children that persists in asthma and CF indicating shared host regulation favoring growth of commensals. Furthermore, we provide evidence for dysbiosis with a decrease in diversity and biomass associated with the presence of known pathogens consistent with impaired host defense in children with CF
Efficacy and Safety of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation: A Phase 3b, Randomized, Placebo-controlled Study
Rationale: The triple-combination regimen elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was shown to be safe and efficacious in children aged 6 through 11 years with cystic fibrosis and at least one F508del-CFTR allele in a phase 3, open-label, single-arm study. Objectives: To further evaluate the efficacy and safety of ELX/TEZ/IVA in children 6 through 11 years of age with cystic fibrosis heterozygous for F508del and a minimal function CFTR mutation (F/MF genotypes) in a randomized, double-blind, placebo-controlled phase 3b trial. Methods: Children were randomized to receive either ELX/TEZ/IVA (n = 60) or placebo (n = 61) during a 24-week treatment period. The dose of ELX/TEZ/IVA administered was based on weight at screening, with children <30 kg receiving ELX 100 mg once daily, TEZ 50 mg once daily, and IVA 75 mg every 12 hours, and children ⩾30 kg receiving ELX 200 mg once daily, TEZ 100 mg once daily, and IVA 150 mg every 12 hours (adult dose). Measurements and Main Results: The primary endpoint was absolute change in lung clearance index2.5 from baseline through Week 24. Children given ELX/TEZ/IVA had a mean decrease in lung clearance index2.5 of 2.29 units (95% confidence interval [CI], 1.97-2.60) compared with 0.02 units (95% CI, -0.29 to 0.34) in children given placebo (between-group treatment difference, -2.26 units; 95% CI, -2.71 to -1.81; P < 0.0001). ELX/TEZ/IVA treatment also led to improvements in the secondary endpoint of sweat chloride concentration (between-group treatment difference, -51.2 mmol/L; 95% CI, -55.3 to -47.1) and in the other endpoints of percent predicted FEV1 (between-group treatment difference, 11.0 percentage points; 95% CI, 6.9-15.1) and Cystic Fibrosis Questionnaire-Revised Respiratory domain score (between-group treatment difference, 5.5 points; 95% CI, 1.0-10.0) compared with placebo from baseline through Week 24. The most common adverse events in children receiving ELX/TEZ/IVA were headache and cough (30.0% and 23.3%, respectively); most adverse events were mild or moderate in severity. Conclusions: In this first randomized, controlled study of a cystic fibrosis transmembrane conductance regulator modulator conducted in children 6 through 11 years of age with F/MF genotypes, ELX/TEZ/IVA treatment led to significant improvements in lung function, as well as robust improvements in respiratory symptoms and cystic fibrosis transmembrane conductance regulator function. ELX/TEZ/IVA was generally safe and well tolerated in this pediatric population with no new safety findings.
Keywords: children; cystic fibrosis; elexacaftor; ivacaftor; tezacaftor
VX-659–Tezacaftor–Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles
BACKGROUND: The next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector VX-659, in triple combination with tezacaftor and ivacaftor (VX-659–tezacaftor–ivacaftor), was developed to restore the function of Phe508del CFTR protein in patients with cystic fibrosis. METHODS: We evaluated the effects of VX-659–tezacaftor–ivacaftor on the processing, trafficking, and function of Phe508del CFTR protein using human bronchial epithelial cells. A range of oral VX-659–tezacaftor–ivacaftor doses in triple combination were then evaluated in randomized, controlled, double-blind, multicenter trials involving patients with cystic fibrosis who were heterozygous for the Phe508del CFTR mutation and a minimal-function CFTR mutation (Phe508del–MF genotypes) or homozygous for the Phe508del CFTR mutation (Phe508del–Phe508del genotype). The primary end points were safety and the absolute change from baseline in the percentage of predicted forced expiratory volume in 1 second (FEV1). RESULTS: VX-659–tezacaftor–ivacaftor significantly improved the processing and trafficking of Phe508del CFTR protein as well as chloride transport in vitro. In patients, VX-659–tezacaftor–ivacaftor had an acceptable safety and side-effect profile. Most adverse events were mild or moderate. VX-659–tezacaftor–ivacaftor resulted in significant mean increases in the percentage of predicted FEV1 through day 29 (P<0.001) of up to 13.3 points in patients with Phe508del–MF genotypes; in patients with the Phe508del–Phe508del genotype already receiving tezacaftor–ivacaftor, adding VX-659 resulted in a further 9.7-point increase in the percentage of predicted FEV1. The sweat chloride concentrations and scores on the respiratory domain of the Cystic Fibrosis Questionnaire–Revised improved in both patient populations. CONCLUSIONS: Robust in vitro activity of VX-659–tezacaftor–ivacaftor targeting Phe508del CFTR protein translated into improvements for patients with Phe508del–MF or Phe508del–Phe508del genotypes. VX-659 triple-combination regimens have the potential to treat the underlying cause of disease in approximately 90% of patients with cystic fibrosis. (Funded by Vertex Pharmaceuticals; VX16-659-101 and VX16-659-001 ClinicalTrials.gov numbers, NCT03224351. opens in new tab and NCT03029455. opens in new tab.
Antigen-driven PD-1+ TOX+ BHLHE40+ and PD-1+ TOX+ EOMES+ T lymphocytes regulate juvenile idiopathic arthritis in situ
T lymphocytes accumulate in inflamed tissues of patients with chronic inflammatory diseases (CIDs) and express pro-inflammatory cytokines upon re-stimulation in vitro. Further, a significant genetic linkage to MHC genes suggests that T lymphocytes play an important role in the pathogenesis of CIDs including juvenile idiopathic arthritis (JIA). However, the functions of T lymphocytes in established disease remain elusive. Here we dissect the transcriptional and the clonal heterogeneity of synovial T lymphocytes in JIA patients by single-cell RNA sequencing combined with T cell receptor profiling on the same cells. We identify clonally expanded subpopulations of T lymphocytes expressing genes reflecting recent activation by antigen in situ. A PD-1+ TOX+ EOMES+ population of CD4+ T lymphocytes expressed immune regulatory genes and chemoattractant genes for myeloid cells. A PD-1+ TOX+ BHLHE40+ population of CD4+ , and a mirror population of CD8+ T lymphocytes expressed genes driving inflammation, and genes supporting B lymphocyte activation in situ. This analysis points out that multiple types of T lymphocytes have to be targeted for therapeutic regeneration of tolerance in arthritis
SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself
The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-β, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-β. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-β, and is distracted from itself
- …