1,903 research outputs found

    Higher order approximation of isochrons

    Full text link
    Phase reduction is a commonly used techinque for analyzing stable oscillators, particularly in studies concerning synchronization and phase lock of a network of oscillators. In a widely used numerical approach for obtaining phase reduction of a single oscillator, one needs to obtain the gradient of the phase function, which essentially provides a linear approximation of isochrons. In this paper, we extend the method for obtaining partial derivatives of the phase function to arbitrary order, providing higher order approximations of isochrons. In particular, our method in order 2 can be applied to the study of dynamics of a stable oscillator subjected to stochastic perturbations, a topic that will be discussed in a future paper. We use the Stuart-Landau oscillator to illustrate the method in order 2

    Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase

    Full text link
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted.Comment: 13 pages, 4 figures, 2 table

    Space-Time Complexity in Hamiltonian Dynamics

    Full text link
    New notions of the complexity function C(epsilon;t,s) and entropy function S(epsilon;t,s) are introduced to describe systems with nonzero or zero Lyapunov exponents or systems that exhibit strong intermittent behavior with ``flights'', trappings, weak mixing, etc. The important part of the new notions is the first appearance of epsilon-separation of initially close trajectories. The complexity function is similar to the propagator p(t0,x0;t,x) with a replacement of x by the natural lengths s of trajectories, and its introduction does not assume of the space-time independence in the process of evolution of the system. A special stress is done on the choice of variables and the replacement t by eta=ln(t), s by xi=ln(s) makes it possible to consider time-algebraic and space-algebraic complexity and some mixed cases. It is shown that for typical cases the entropy function S(epsilon;xi,eta) possesses invariants (alpha,beta) that describe the fractal dimensions of the space-time structures of trajectories. The invariants (alpha,beta) can be linked to the transport properties of the system, from one side, and to the Riemann invariants for simple waves, from the other side. This analog provides a new meaning for the transport exponent mu that can be considered as the speed of a Riemann wave in the log-phase space of the log-space-time variables. Some other applications of new notions are considered and numerical examples are presented.Comment: 27 pages, 6 figure

    Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7

    Get PDF
    We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd2_2Zr2_2O7_7. Powder x-ray diffraction analysis confirms that Nd2_2Zr2_2O7_7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the axes of the Nd3+^{3+} ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T7T\sim7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical Review

    Observation of a red-blue detuning asymmetry in matter-wave superradiance

    Full text link
    We report the first experimental observations of strong suppression of matter-wave superradiance using blue-detuned pump light and demonstrate a pump-laser detuning asymmetry in the collective atomic recoil motion. In contrast to all previous theoretical frameworks, which predict that the process should be symmetric with respect to the sign of the pump-laser detuning, we find that for condensates the symmetry is broken. With high condensate densities and red-detuned light, the familiar distinctive multi-order, matter-wave scattering pattern is clearly visible, whereas with blue-detuned light superradiance is strongly suppressed. In the limit of a dilute atomic gas, however, symmetry is restored.Comment: Accepted by Phys. Rev. Let

    Supersymmetry of a Nonstationary Pauli Equation

    Full text link
    The supersymmetry of the electron in both the nonstationary magnetic and electric fields in a two-dimensional case is studied. The supercharges which are the integrals of motion and their algebra are established. Using the obtained algebra the solutions of nonstationary Pauli equation are generated.Comment: 12 pages, Late

    Parity doubling in particle physics

    Full text link
    Parity doubling in excited hadrons is reviewed. Parity degeneracy in hadrons was first experimentally observed 40 years ago. Recently new experimental data on light mesons caused much excitement and renewed interest to the phenomenon, which still remains to be enigmatic. The present retrospective review is an attempt to trace the history of parity doubling phenomenon, thus providing a kind of introduction to the subject. We begin with early approaches of 1960s (Regge theory and dynamical symmetries) and end up with the latest trends (manifestations of broader degeneracies and AdS/QCD). We show the evolution of various ideas about parity doubling. The experimental evidence for this phenomenon is scrutinized in the non-strange sector. Some experiments of 1960s devoted to the search for missing non-strange bosons are re-examined and it is argued that results of these experiments are encouraging from the modern perspective.Comment: Version to appear in Int. J. Mod. Phys. A, 63 pages, 9 figure

    Coherent states of non-relativistic electron in magnetic-solenoid field

    Full text link
    We construct coherent states of a nonrelativistic electron in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kind of coherent states, the first kind corresponds to classical trajectories which embrace the solenoid and the second one to trajectories which do not. Mean coordinates in the constructed coherent states are moving along classical trajectories, the coherent states maintain their form under the time evolution, and represent a complete set of functions, which can be useful in semi classical calculations. In the absence of the Aharonov-Bohm filed these states are reduced to the well-known in the case of uniform magnetic field Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures adde

    Coherent states and related quantizations for unbounded motions

    Full text link
    We build coherent states (CS) for unbounded motions along two different procedures. In the first one we adapt the Malkin-Manko construction for quadratic Hamiltonians to the motion of a particle in a linear potential. A generalization to arbitrary potentials is discussed. The second one extends to continuous spectrum previous constructions of action-angle coherent states in view of a consistent energy quantization

    High resolution infrared absorption spectra, crystal field, and relaxation processes in CsCdBr_3:Pr^3+

    Full text link
    High resolution low-temperature absorption spectra of 0.2% Pr^3+ doped CsCdBr_3 were measured in the spectral region 2000--7000 cm-1. Positions and widths of the crystal field levels within the 3H5, 3H4, 3F2, and 3F3 multiplets of the Pr^3+ main center have been determined. Hyperfine structure of several spectral lines has been found. Crystal field calculations were carried out in the framework of the semiphenomenological exchange charge model (ECM). Parameters of the ECM were determined by fitting to the measured total splittings of the 3H4 and 3H6 multiplets and to the observed in this work hyperfine splittings of the crystal field levels. One- and two-phonon relaxation rates were calculated using the phonon Green's functions of the perfect (CsCdBr_3) and locally perturbed (impurity dimer centers in CsCdBr_3:Pr^3+) crystal lattice. Comparison with the measured linewidths confirmed an essential redistribution of the phonon density of states in CsCdBr_3 crystals doped with rare-earth ions.Comment: 16 pages, 5 tables, 3 figure
    corecore