New notions of the complexity function C(epsilon;t,s) and entropy function
S(epsilon;t,s) are introduced to describe systems with nonzero or zero Lyapunov
exponents or systems that exhibit strong intermittent behavior with
``flights'', trappings, weak mixing, etc. The important part of the new notions
is the first appearance of epsilon-separation of initially close trajectories.
The complexity function is similar to the propagator p(t0,x0;t,x) with a
replacement of x by the natural lengths s of trajectories, and its introduction
does not assume of the space-time independence in the process of evolution of
the system. A special stress is done on the choice of variables and the
replacement t by eta=ln(t), s by xi=ln(s) makes it possible to consider
time-algebraic and space-algebraic complexity and some mixed cases. It is shown
that for typical cases the entropy function S(epsilon;xi,eta) possesses
invariants (alpha,beta) that describe the fractal dimensions of the space-time
structures of trajectories. The invariants (alpha,beta) can be linked to the
transport properties of the system, from one side, and to the Riemann
invariants for simple waves, from the other side. This analog provides a new
meaning for the transport exponent mu that can be considered as the speed of a
Riemann wave in the log-phase space of the log-space-time variables. Some other
applications of new notions are considered and numerical examples are
presented.Comment: 27 pages, 6 figure