106 research outputs found
Structural changes in gill DNA reveal the effects of contaminants on Puget Sound fish.
Structural differences were identified in gill DNA from two groups of English sole collected from Puget Sound, Washington, in October 2000. One group was from the industrialized Duwamish River (DR) in Seattle and the other from relatively clean Quartermaster Harbor (QMH). Chemical markers of sediment contamination [e.g., polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)] established that the DR was substantially more contaminated than QMH. The levels of these chemicals in the sediments of both sites were consistent with levels of cytochrome P450 1A (CYP1A) expression in the gills of English sole from the same sites. Structural differences in gill DNA between the groups were evinced via statistical models of Fourier transform-infrared (FT-IR) spectra. Marked structural damage was found in the gill DNA of the DR fish as reflected in differences in base functional groups (e.g., C-O and NH2) and conformational properties (e.g., arising from perturbations in vertical base stacking interactions). These DNA differences were used to discriminate between the two fish groups through principal components analysis of mean FT-IR spectra. In addition, logistic regression analysis allowed for the development of a "DNA damage index" to assess the effects of contaminants on the gill. The evidence implies that environmental chemicals contribute to the DNA changes in the gill. The damaged DNA is a promising marker for identifying, through gill biopsies, contaminant effects on fish
Assessment of the potential in vivo ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum
Because of their specific properties (mechanical, electrical, etc), carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxic potential of CNTs in the amphibian larvae (Ambystoma mexicanum). Acute toxicity and genotoxicity were analysed after 12 days of exposure in laboratory conditions. The genotoxic effects were analysed by scoring the micronucleated erythrocytes in the
circulating blood of the larvae according to the French standard micronucleus assay. The results obtained in the present study demonstrated that CNTs are neither acutely toxic nor genotoxic to larvae whatever the CNTs concentration in the water, although black masses of CNTs were observed inside the gut. In the increasing economical context of CNTs, complementary studies must be undertaken, especially including mechanistic and environmental investigations
Subtle effects of environmental stress observed in the early life stages of the Common frog, Rana temporaria
Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue ‘fingerprint’ in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection- Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism
Modest induction of phase 2 enzyme activity in the F-344 rat prostate
BACKGROUND: Prostate cancer is the most commonly diagnosed malignancy in men and is thought to arise as a result of endogenous oxidative stress in the face of compromised carcinogen defenses. We tested whether carcinogen defense (phase 2) enzymes could be induced in the prostate tissues of rats after oral feeding of candidate phase 2 enzyme inducing compounds. METHODS: Male F344 rats were gavage fed sulforaphane, β-naphthoflavone, curcumin, dimethyl fumarate or vehicle control over five days, and on the sixth day, prostate, liver, kidney and bladder tissues were harvested. Cytosolic enzyme activities of nicotinamide quinone oxidoreductase (NQO1), total glutathione transferase (using DCNB) and mu-class glutathione transferase (using CDNB) were determined in the treated and control animals and compared. RESULTS: In prostatic tissues, sulforaphane produced modest but significant increases in the enzymatic activities of NQO1, total GST and GST-mu compared to control animals. β-naphthoflavone significantly increased NQO1 and GST-mu activities and curcumin increased total GST and GST-mu enzymatic activities. Dimethyl fumarate did not significantly increase prostatic phase 2 enzyme activity. Compared to control animals, sulforaphane also significantly induced NQO1 or total GST enzyme activity in the liver, kidney and, most significantly, in the bladder tissues. All compounds were well tolerated over the course of the gavage feedings. CONCLUSION: Orally administered compounds will induce modestly phase 2 enzyme activity in the prostate although the significance of this degree of induction is unknown. The 4 different compounds also altered phase 2 enzyme activity to different degrees in different tissue types. Orally administered sulforaphane potently induces phase 2 enzymes in bladder tissues and should be investigated as a bladder cancer preventive agent
Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937
BACKGROUND: Breast cancer is the second leading cause of cancer deaths in women in the United States. Although the causes of this disease are incompletely understood, oxidative DNA damage is presumed to play a critical role in breast carcinogenesis. A common oxidatively induced DNA lesion is 8-hydroxyguanine (8-OH-Gua), which has been implicated in carcinogenesis. The aim of this study was to investigate the ability of HCC1937 and MCF-7 breast cancer cell lines to repair 8-OH-Gua relative to a nonmalignant human mammary epithelial cell line, AG11134. METHODS: We used oligonucleotide incision assay to analyze the ability of the two breast cancer cell lines to incise 8-OH-Gua relative to the control cell line. Liquid chromatography/mass spectrometry (LC/MS) was used to measure the levels of 8-OH-Gua as its nucleoside, 8-OH-dG in the cell lines after exposure to H(2)O(2 )followed by 30 min repair period. Protein expression levels were determined by Western blot analysis, while the hOGG1 mRNA levels were analyzed by RT-PCR. Complementation of hOGG1 activity in HCC1937 cells was assessed by addition of the purified protein in the incision assay, and in vivo by transfection of pFlagCMV-4-hOGG1. Clonogenic survival assay was used to determine sensitivity after H(2)O(2)-mediated oxidative stress. RESULTS: We show that the HCC1937 breast cancer cells have diminished ability to incise 8-OH-Gua and they accumulate higher levels of 8-OH-dG in the nuclear genome after H(2)O(2 )treatment despite a 30 min repair period when compared to the nonmalignant mammary cells. The defective incision of 8-OH-Gua was consistent with expression of undetectable amounts of hOGG1 in HCC1937 cells. The reduced incision activity was significantly stimulated by addition of purified hOGG1. Furthermore, transfection of pFlagCMV-4-hOGG1 in HCC1937 cells resulted in enhanced incision of 8-OH-Gua. HCC1937 cells are more sensitive to high levels of H(2)O(2 )and have up-regulated SOD1 and SOD2. CONCLUSION: This study provides evidence for inefficient repair of 8-OH-Gua in HCC1937 breast cancer cell line and directly implicates hOGG1 in this defect
Physicochemical attack against solid tumors based on the reversal of direction of entropy flow: an attempt to introduce thermodynamics in anticancer therapy
BACKGROUND: There are many differences between healthy tissue and growing tumor tissue, including metabolic, structural and thermodynamic differences. Both structural and thermodynamic differences can be used to follow the entropy differences in cancerous and normal tissue. Entropy production is a bilinear form of the rates of irreversible processes and the corresponding "generalized forces". Entropy production due to various dissipation mechanisms based on temperature differences, chemical potential gradient, chemical affinity, viscous stress and exerted force is a promising tool for calculations relating to potential targets for tumor isolation and demarcation. METHODS: The relative importance of five forms of entropy production was assessed through mathematical estimation. Using our mathematical model we demonstrated that the rate of entropy production by a cancerous cell is always higher than that of a healthy cell apart from the case of the application of external energy. Different rates of entropy production by two kinds of cells influence the direction of entropy flow between the cells. Entropy flow from a cancerous cell to a healthy cell transfers information regarding the cancerous cell and propagates its invasive action to the healthy tissues. To change the direction of entropy flow, in addition to designing certain biochemical pathways to reduce the rate of entropy production by cancerous cells, we suggest supplying external energy to the tumor area, changing the relative rate of entropy production by the two kinds of cells and leading to a higher entropy accumulation in the surrounding normal cells than in the tumorous cells. CONCLUSION: Through the use of mathematical models it was quantitatively demonstrated that when no external force field is applied, the rate of entropy production of cancerous cells is always higher than that of healthy cells. However, when the external energy of square wave electric pulses is applied to tissues, the rate of entropy production of normal cells may exceed that of cancerous cells. Consequently, the application of external energy to the body can reverse the direction of the entropy current. The harmful effect brought about by the entropy flow from cancerous to healthy tissue can be blocked by the reversed direction of entropy current from the irradiated normal tissue around the tumor
Analysis of the effects of exposure to acute hypoxia on oxidative lesions and tumour progression in a transgenic mouse breast cancer model
<p>Abstract</p> <p>Background</p> <p>Tumour hypoxia is known to be a poor prognostic indicator, predictive of increased risk of metastatic disease and reduced survival. Genomic instability has been proposed as one of the potential mechanisms for hypoxic tumour progression. Both of these features are commonly found in many cancer types, but their relationship and association with tumour progression has not been examined in the same model.</p> <p>Methods</p> <p>To address this issue, we determined the effects of 6 week <it>in vivo </it>acute hypoxic exposure on the levels of mutagenic lipid peroxidation product, malondialdehyde, and 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA (8-oxo-dG) lesions in the transgenic polyomavirus middle T (PyMT) breast cancer mouse model.</p> <p>Results</p> <p>We observed significantly increased plasma lipid peroxidation and 8-oxo-dG lesion levels in the hypoxia-exposed mice. Consumption of malondialdehyde also induced a significant increase in the PyMT tumour DNA lesion levels, however, these increases did not translate into enhanced tumour progression. We further showed that the <it>in vivo </it>exposure to acute hypoxia induced accumulation of F4/80 positive tumour-associated macrophages (TAMs), demonstrating a relationship between hypoxia and macrophages in an experimental model.</p> <p>Conclusion</p> <p>These data suggest that although exposure to acute hypoxia causes an increase in 8-oxo-dG lesions and TAMs in the PyMT tumours, these increases do not translate into significant changes in tumour progression at the primary or metastatic levels in this strong viral oncogene-driven breast cancer model.</p
Genetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk
Background: Previous research indicates increased prostate cancer risk for pesticide applicators and pesticide manufacturing workers. Although underlying mechanisms are unknown, evidence suggests a role of oxidative DNA damage
Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress
BACKGROUND: Oxidative damage to mitochondrial DNA has been implicated as a causative factor in a wide variety of degenerative diseases, aging and cancer. The modified guanine, 7,8-dihydro-8-oxoguanine (also known as 8-hydroxyguanine) is one of the major oxidized bases generated in DNA by reactive oxygen species and has gained most of the attention in recent years as a marker of oxidative DNA injury and its suspected role in the initiation of carcinogenesis. 8-hydroxyguanine is removed by hOgg1, a DNA glycosylase/AP lyase involved in the base excision repair pathway. METHODS: We over-expressed wild type and R229Q mutant hOGG1 in the nucleus and mitochondria of cells lacking mitochondrial hOGG1 expression through an expression vector containing nuclear and mitochondrial targeting sequence respectively. We used quantitative real time PCR to analyze mtDNA integrity after exposure to oxidative damaging agents, in cells transfected with or without mitochondrially-targeted mutant hogg1. RESULT: Over-expression of wild type hOgg1 in both nucleus and mitochondria resulted in increased cellular survival when compared to vector or mutant over-expression of hOGG1. Interestingly, mitochondrially-targeted mutant hogg1 resulted in more cell death than nuclear targeted mutant hogg1 upon exposure of cells to oxidative damage. Additional we examined mitochondrial DNA integrity after oxidative damage exposure using real-time quantitative PCR. The presence of mutant hogg1 in the mitochondria resulted in reduced mitochondrial DNA integrity when compared to the wild type. Our work indicates that the R229Q hOGG1 mutation failed to protect cells from oxidative damage and that such mutations in cancer may be more detrimental to cellular survival when present in the mitochondria than in the nucleus. CONCLUSION: These findings suggest that deficiencies in hOGG1, especially in the mitochondria may lead to reduced mitochondrial DNA integrity, consequently resulting in decreased cell viability
Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues
<p>Abstract</p> <p>Background</p> <p>During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC).</p> <p>Methods</p> <p>Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue.</p> <p>Results</p> <p>We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue.</p> <p>Conclusions</p> <p>Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells.</p
- …
