202 research outputs found

    Organ culture: a new model for vascular endothelium dysfunction.

    Get PDF
    BACKGROUND: Endothelium dysfunction is believed to play a role in the development of cardiovascular disease. The aim of the present study was to evaluate the suitability of organ culture as a model for endothelium dysfunction. METHODS: The isometric tension was recorded in isolated segments of the rat mesenteric artery branch, before and after organ culture for 20 h. Vasodilatation was expressed as % of preconstriction with U46619. The acetylcholine (ACh) induced nitric oxide (NO) mediated dilatation was studied in the presence of 10 &mgr;M indomethacin, 50 nM charybdotoxin and 1 &mgr;M apamin. Endothelium-derived hyperpolarising factor (EDHF) was studied in the presence of 0.1 mM L-NOARG and indomethacin. Prostaglandins were studied in the presence of L-NOARG, charybdotoxin and apamin. RESULTS: The ACh-induced NO and prostaglandin-mediated dilatations decreased significantly during organ culture (NO: 84% in control and 36% in cultured; prostaglandins: 48% in control and 16% in cultured). Notably, the total ACh-dilatation was not changed. This might be explained by the finding that EDHF alone stimulated a full dilatation even after organ culture (83% in control and 80% in cultured). EDHF may thereby compensate for the loss in NO and prostaglandin-mediated dilatation. Dilatations induced by forskolin or sodium nitroprusside did not change after organ culture, indicating intact smooth muscle cell function. CONCLUSIONS: Organ culture induces a loss in NO and prostaglandin-mediated dilatation, which is compensated for by EDHF. This shift in mediator profile resembles that in endothelium dysfunction. Organ culture provides an easily accessible model where the molecular changes that take place, when endothelium dysfunction is developed, can be examined over time

    Use of bacteria- and fungus-binding mesh in negative pressure wound therapy provides significant granulation tissue without tissue ingrowth.

    Get PDF
    Objective: Bacteria- and fungus-binding mesh traps and inactivates bacteria and fungus, which makes it interesting, alternative, and wound filler for negative pressure wound therapy (NPWT). The aim of this study was to compare pathogen-binding mesh, black foam, and gauze in NPWT with regard to granulation tissue formation and ingrowth of wound bed tissue in the wound filler. Methods: Wounds on the backs of 8 pigs underwent 72 hours of NPWT using pathogen-binding mesh, foam, or gauze. Microdeformation of the wound bed and granulation tissue formation and the force required to remove the wound fillers was studied. Results: Pathogen-binding mesh produced more granulation tissue, leukocyte infiltration, and tissue disorganization in the wound bed than gauze, but less than foam. All 3 wound fillers caused microdeformation of the wound bed surface. Little force was required to remove pathogen-binding mesh and gauze, while considerable force was needed to remove foam. This is the result of tissue growth into the foam, but not into pathogen-binding mesh or gauze, as shown by examination of biopsy sections from the wound bed. Conclusions: This study shows that using pathogen-binding mesh as a wound filler for NPWT leads to a significant amount of granulation tissue in the wound bed, more than that with gauze, but eliminates the problems of ingrowth of the wound bed into the wound filler. Pathogen-binding mesh is thus an interesting wound filler in NPWT

    Macroscopic changes during negative pressure wound therapy of the open abdomen using conventional negative pressure wound therapy and NPWT with a protective disc over the intestines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher closure rates of the open abdomen have been reported with negative pressure wound therapy (NPWT) than with other wound management techniques. However, the method has occasionally been associated with increased development of fistulae. We have previously shown that NPWT induces ischemia in the underlying small intestines close to the vacuum source, and that a protective disc placed between the intestines and the vacuum source prevents the induction of ischemia. In the present study we compare macroscopic changes after 12, 24, and 48 hours, using conventional NPWT and NPWT with a protective disc between the intestines and the vacuum source.</p> <p>Methods</p> <p>Twelve pigs underwent midline incision. Six animals underwent conventional NPWT, while the other six pigs underwent NPWT with a protective disc inserted between the intestines and the vacuum source. Macroscopic changes were photographed and quantified after 12, 24, and 48 hours of NPWT.</p> <p>Results</p> <p>The surface of the small intestines was red and mottled as a result of petechial bleeding in the intestinal wall in all cases. After 12, 24 and 48 hours of NPWT, the area of petechial bleeding was significantly larger when using conventional NPWT than when using NPWT with the protective disc (9.7 ± 1.0 cm<sup>2 </sup>vs. 1.8 ± 0.2 cm<sup>2</sup>, p < 0.001, 12 hours), (14.5 ± 0.9 cm<sup>2 </sup>vs. 2.0 ± 0.2 cm<sup>2</sup>, 24 hours) (17.0 ± 0.7 cm<sup>2 </sup>vs. 2.5 ± 0.2 cm<sup>2 </sup>with the disc, p < 0.001, 48 hours)</p> <p>Conclusions</p> <p>The areas of petechial bleeding in the small intestinal wall were significantly larger following conventional NPWT after 12, 24 and 48 hours, than using NPWT with a protective disc between the intestines and the vacuum source. The protective disc protects the intestines, reducing the amount of petechial bleeding.</p

    Potent P2Y(6 )receptor mediated contractions in human cerebral arteries

    Get PDF
    BACKGROUND: Extracellular nucleotides play an important role in the regulation of vascular tone and may be involved in cerebral vasospasm after subarachnoidal haemorrhage. This study was designed to characterise the contractile P2 receptors in endothelium-denuded human cerebral and omental arteries. The isometric tension of isolated vessel segments was recorded in vitro. P2 receptor mRNA expression was examined by RT-PCR. RESULTS: In human cerebral arteries, the selective P2Y(6 )receptor agonist, UDPβS was the most potent of all the agonists tested (pEC(50 )= 6.8 ± 0.7). The agonist potency; UDPβS > αβ-MeATP > UTPγS > ATPγS > ADPβS = 0, indicated the presence of contractile P2X(1 )P2Y(2), P2Y(4 )and P2Y(6), but not P2Y(1 )receptors, in human cerebral arteries. In human omental arteries, UDPβS was inactive. The agonist potency; αβ-MeATP > ATPγS = UTPγS > ADPβS = UDPβS = 0, indicated the presence of contractile P2X(1), and P2Y(2 )receptors, but not P2Y(1 )or P2Y(6 )receptors, in human omental arteries. RT-PCR analysis of endothelium-denuded human cerebral and omental arteries demonstrated P2X(1), P2Y(1), P2Y(2 )and P2Y(6 )receptor mRNA expression. There were no bands for the P2Y(4 )receptor mRNA in the omental arteries, while barely detectable in the cerebral arteries. CONCLUSIONS: P2Y(6 )receptors play a prominent role in mediating contraction of human cerebral arteries. Conversely, no such effect can be observed in human omental arteries and previous results confirm the absence of P2Y(6 )receptors in human coronary arteries. The P2Y(6 )receptor might be a suitable target for the treatment of cerebral vasospasm

    Tumor necrosis factor and its receptors in the neuroretina and retinal vasculature after ischemia-reperfusion injury in the pig retina

    Get PDF
    Numerous studies have been performed aimed at limiting the extent of retinal injury after ischemia, but there is still no effective pharmacological treatment available. The aim of the present study was to examine the role of tumor necrosis factor (TNF)α and its receptors (TNF-R1 and TNF-R2), especially considering the neuroretina and the retinal vasculature since the retinal blood vessels are key organs in circulatory failure

    The Effects of Variable, Intermittent, and Continuous Negative Pressure Wound Therapy, Using Foam or Gauze, on Wound Contraction, Granulation Tissue Formation, and Ingrowth Into the Wound Filler

    Get PDF
    Objective: Negative pressure wound therapy (NPWT) is commonly used in the continuous mode. Intermittent pressure therapy (IPT) results in faster wound healing, but it often causes pain. Variable pressure therapy (VPT) has therefore been introduced to provide a smooth transition between 2 different pressure environments, thereby maintaining the negative pressure environment throughout the therapy. The aim of the present study was to examine the effects of IPT and VPT on granulation tissue formation. Method: A peripheral wound in a porcine model was treated for 72 hours with continuous NPWT (-80 mm Hg), IPT (0 to -80 mm Hg), or VPT (-10 to -80 mm Hg), using foam or gauze as wound filler. Wound contraction and force to remove the wound filler were measured. Biopsies from the wound bed were examined histologically for granulation tissue formation. Results: Intermittent pressure therapy and VPT produced similar results. Wound contraction was more pronounced following IPT and VPT than continuous NPWT. Intermittent pressure therapy and VPT resulted in the formation of more granulation tissue than continuous NPWT. Leukocyte infiltration and tissue disorganization were more prominent after IPT and VPT than after continuous NPWT. Granulation tissue grew into foam but not into gauze, regardless of the mode of negative pressure application, and less force was needed to remove gauze than foam. Conclusions: Wound contraction and granulation tissue formation is more pronounced following IPT and VPT than continuous NPWT. Granulation tissue grows into foam but not into gauze. The choice of negative pressure mode and wound filler is crucial in clinical practice to optimize healing while minimizing pain

    The Effects of Variable, Intermittent, and Continuous Negative Pressure Wound Therapy, Using Foam or Gauze, on Wound Contraction, Granulation Tissue Formation, and Ingrowth Into the Wound Filler

    Get PDF
    Objective: Negative pressure wound therapy (NPWT) is commonly used in the continuous mode. Intermittent pressure therapy (IPT) results in faster wound healing, but it often causes pain. Variable pressure therapy (VPT) has therefore been introduced to provide a smooth transition between 2 different pressure environments, thereby maintaining the negative pressure environment throughout the therapy. The aim of the present study was to examine the effects of IPT and VPT on granulation tissue formation. Method: A peripheral wound in a porcine model was treated for 72 hours with continuous NPWT (-80 mm Hg), IPT (0 to -80 mm Hg), or VPT (-10 to -80 mm Hg), using foam or gauze as wound filler. Wound contraction and force to remove the wound filler were measured. Biopsies from the wound bed were examined histologically for granulation tissue formation. Results: Intermittent pressure therapy and VPT produced similar results. Wound contraction was more pronounced following IPT and VPT than continuous NPWT. Intermittent pressure therapy and VPT resulted in the formation of more granulation tissue than continuous NPWT. Leukocyte infiltration and tissue disorganization were more prominent after IPT and VPT than after continuous NPWT. Granulation tissue grew into foam but not into gauze, regardless of the mode of negative pressure application, and less force was needed to remove gauze than foam. Conclusions: Wound contraction and granulation tissue formation is more pronounced following IPT and VPT than continuous NPWT. Granulation tissue grows into foam but not into gauze. The choice of negative pressure mode and wound filler is crucial in clinical practice to optimize healing while minimizing pain

    Protein kinase C in porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    Get PDF
    PURPOSE: Identification of the intracellular signal-transduction pathways activated in retinal ischemia may be important in revealing novel pharmacological targets. To date, most studies have focused on identifying neuroprotective agents. The retinal blood vessels are key organs in circulatory failure, and this study was therefore designed to examine the retinal vasculature separately from the neuroretina. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. Protein kinase C (PKC)alpha, PKCbeta1, and PKCbeta2 mRNA levels, and protein expression were determined using real-time PCR, western blot, and immunofluorescence staining techniques. RESULTS: The retinal arteries could easily be dissected free and studied separately from the neuroretina in this porcine model. The PKCalpha, PKCbeta1, and PKCbeta2 mRNA levels tended to be lower in ischemia-reperfused than in sham-operated eyes in both the retinal arteries and the neuroretina. This was most prominent after 5 h, and less pronounced after 12 h and 20 h of reperfusion. Likewise, the protein levels of PKCalpha, PKCbeta1, and PKCbeta2 were slightly lower following ischemia-reperfusion when compared to sham-operated eyes. PKCalpha, PKCbeta1, and PKCbeta2 immunostaining were observed in bipolar cells of the neuroretina and in endothelial cells, and to a low extent in the smooth muscle layer, of the retinal arteries. CONCLUSIONS: Retinal ischemia followed by reperfusion results in lower levels of PKC in both the neuroretina and retinal arteries. New targets for pharmacological treatment may be found by studying the retinal vasculature so as to identify the intracellular signal-transduction pathways involved in the development of injury following retinal circulatory failure

    Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    Get PDF
    PURPOSE: The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham- operated fellow eye. The retinal arteries and neuroretina were isolated separately and examined. Tissue morphology and DNA fragmentation were studied using histology. Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, c-junNH(2)-terminal kinases (JNK), and c-jun protein and mRNA expression were examined using immunofluorescence staining, western blot, and real-time PCR techniques. RESULTS: Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. CONCLUSIONS: Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure
    corecore