11 research outputs found

    3D

    No full text
    © 2021 Wiley Periodicals LLC.Fabrication of scaffolds using polymers and then cell seeding is a routine protocol of tissue engineering applications. Synthetic polymers have adequate mechanical properties to substitute for some bone tissue, but they are generally hydrophobic and have no specific cell recognition sites, which leads to poor cell affinity and adhesion. Some natural polymers, have high cell affinity but are mechanically weak and do not have the strength required as a bone supporting material. In the present study, 3D printed hybrid scaffolds were fabricated using PCL and GelMA carrying dental pulp stem cells (DPSCs), which is printed in the gaps between the PCL struts. This cell loaded GelMA was shown to support osteoinductivity, while the PCL provided mechanical strength needed to mimic the bone tissue. 3D printed PCL/GelMA and GelMA scaffolds were highly stable during 21 days of incubation in PBS. The compressive moduli of the hybrid scaffolds were in the range of the compressive moduli of trabecular bone. DPSCs were homogeneously distributed throughout the entire hydrogel component and exhibited high cell viability in both scaffolds during 21 days of incubation. Upon osteogenic differentiation DPSCs expressed two key matrix proteins, osteopontin and osteocalcin. Alizarin red staining showed mineralized nodules, which demonstrates osteogenic differentiation of DPSCs within GelMA. This construct yielded a very high cell viability, osteogenic differentiation and mineralization comparable to cell culture without compromising mechanical strength suitable for bone tissue engineering applications. Thus, 3D printed, cell loaded PCL/GelMA hybrid scaffolds have a great potential for use in bone tissue engineering applications

    PCL and PCL-based materials in biomedical applications

    No full text
    Biodegradable polymers have met with an increasing demand in medical usage over the last decades. One of such polymers is poly(epsilon-caprolactone) (PCL), which is a polyester that has been widely used in tissue engineering field for its availability, relatively inexpensive price and suitability for modification. Its chemical and biological properties, physicochemical state, degradability and mechanical strength can be adjusted, and therefore, it can be used under harsh mechanical, physical and chemical conditions without significant loss of its properties. Degradation time of PCL is quite long, thus it is used mainly in the replacement of hard tissues in the body where healing also takes an extended period of time. It is also used at load-bearing tissues of the body by enhancing its stiffness. However, due to its tailorability, use of PCL is not restricted to one type of tissue and it can be extended to engineering of soft tissues by decreasing its molecular weight and degradation time. This review outlines the basic properties of PCL, its composites, blends and copolymers. We report on various techniques for the production of different forms, and provide examples of medical applications such as tissue engineering and drug delivery systems covering the studies performed in the last decades

    Poly (Δ-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review

    No full text
    corecore