14,660 research outputs found

    Elevated temperature crack growth

    Get PDF
    The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data

    Elevated temperature crack growth

    Get PDF
    It is necessary to relate the processes that control crack growth in the immediate vicinity of the crack tip to parameters that can be calculated from remote quantities, such as forces, stresses, or displacements. The most likely parameters appear to be certain path-independent (PI) integrals, several of which have already been proposed for application to high temperature inelastic problems. The ability of currently available PI-integrals to correlate fatigue crack propagation under conditions that simulate the engine combustor liner environment was determined. The utility of advanced fracture mechanics measurements will also be evaluated and determined during the course of the program

    Application of using Hybrid Renewable Energy in Saudi Arabia

    Get PDF
    One of the major world wide concerns of the utilities is to reduce the emissions from traditional power plants by using renewable energy and to reduce the high cost of supplying electricity to remote areas. Hybrid power systems can provide a good solution for such problems because they integrate renewable energy along with the traditional power plants. In Kingdom of Saudi Arabia a remote village called Al-Qtqt, was selected as a case study in order to investigate the ability to use a hybrid power system to provide the village with its needs of electricity. The simulation of this hybrid power system was done using HOMER software

    Abelian 2-form gauge theory: superfield formalism

    Full text link
    We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for {\it all} the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to BRST formalism. The above four (3 + 1)-dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of odd Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). One of the salient features of our present investigation is that the above nilpotent (anti-)BRST symmetry transformations turn out to be absolutely anticommuting due to the presence of a Curci-Ferrari (CF) type of restriction. The latter condition emerges due to the application of our present superfield formalism. The actual CF condition, as is well-known, is the hallmark of a 4D non-Abelian 1-form gauge theory. We demonstrate that our present 4D Abelian 2-form gauge theory imbibes some of the key signatures of the 4D non-Abelian 1-form gauge theory. We briefly comment on the generalization of our supperfield approach to the case of Abelian 3-form gauge theory in four (3 + 1)-dimensions of spacetime.Comment: LaTeX file, 23 pages, journal versio

    Elevated temperature crack growth

    Get PDF
    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use

    Profil Kompetensi Kelistrikan Berdasarkan Klasifikasi dan Kualifikasi Industri untuk Pengembangan Pendidikan dan Latihan Kejuruan

    Full text link
    Tujuan penelitian ini adalah menghasilkan sebuah profil kompetensi bidang kelistrikan berdasarkan klasifikasi dan kualifikasi dunia USAha dan dunia industri. Profil kompetensi ini dapat digunakan untuk pengembangan kurikulum lembaga Diklat bidang kelistrikan, pendidikan vokasi, dan lembaga sertifikasi profesi bidang kelistrikan. Metode penelitian yang digunakan adalah penelitian dan pengembangan yang mengikuti model pengembangan dari Plomp dengan pendekatan DACUM (Developing A Curriculum). Pendekatan Dacum ini melibatkan pelaku industri dan pelaku USAha. Subjek penelitian ini adalah: (1) PT Semen Tonasa sebagai industri besar sebagai pemakai energi listrik; (2) PLN sebagai pemasok tenaga listrik; (3) Assosiasi Kontraktor Listrik Indonesia (AKLI); dan (4) APEI sebagai Lembaga Sertifikasi Kelistrikan Indonesia. Hasil kajian literatur, observasi lapangan, dan wawancara dengan DUDI dijadikan dasar pemetaan kompetensi kerja bidang kelistrikan. Penelitian ini menghasilkan profil kompetensi bidang kelistrikan berupa pemetaan kompetensi kerja bidang kelistrikan berdasarkan klasifikasi dan kualifikasi dunia kerja

    A simplified structure for the second order cosmological perturbation equations

    Full text link
    Increasingly accurate observations of the cosmic microwave background and the large scale distribution of galaxies necessitate the study of nonlinear perturbations of Friedmann-Lemaitre cosmologies, whose equations are notoriously complicated. In this paper we present a new derivation of the governing equations for second order perturbations within the framework of the metric-based approach that is minimal, as regards amount of calculation and length of expressions, and flexible, as regards choice of gauge and stress-energy tensor. Because of their generality and the simplicity of their structure our equations provide a convenient starting point for determining the behaviour of nonlinear perturbations of FL cosmologies with any given stress-energy content, using either the Poisson gauge or the uniform curvature gauge.Comment: 30 pages, no figures. Changed title to the one in published version and some minor changes and addition

    Generalised verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system

    Generalised verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system

    A Deep Learning-Based Privacy-Preserving Model for Smart Healthcare in Internet of Medical Things Using Fog Computing

    Get PDF
    With the emergence of COVID-19, smart healthcare, the Internet of Medical Things, and big data-driven medical applications have become even more important. The biomedical data produced is highly confidential and private. Unfortunately, conventional health systems cannot support such a colossal amount of biomedical data. Hence, data is typically stored and shared through the cloud. The shared data is then used for different purposes, such as research and discovery of unprecedented facts. Typically, biomedical data appear in textual form (e.g., test reports, prescriptions, and diagnosis). Unfortunately, such data is prone to several security threats and attacks, for example, privacy and confidentiality breach. Although significant progress has been made on securing biomedical data, most existing approaches yield long delays and cannot accommodate real-time responses. This paper proposes a novel fog-enabled privacy-preserving model called [Formula: see text] sanitizer, which uses deep learning to improve the healthcare system. The proposed model is based on a Convolutional Neural Network with Bidirectional-LSTM and effectively performs Medical Entity Recognition. The experimental results show that [Formula: see text] sanitizer outperforms the state-of-the-art models with 91.14% recall, 92.63% in precision, and 92% F1-score. The sanitization model shows 28.77% improved utility preservation as compared to the state-of-the-art
    • ā€¦
    corecore