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Abstract—With the emergence of COVID-19, smart healthcare,
the Internet of Medical Things (IoMT), and big data-driven
medical applications have become even more important. The
biomedical data produced is highly confidential and private.
Unfortunately, conventional health systems cannot support such
a colossal amount of biomedical data. Hence, data is typically
stored and shared through the cloud. The shared data is then used
for different purposes, such as research and discovery of unprece-
dented facts. Typically, biomedical data appear in textual form
(e.g., test reports, prescriptions, and diagnosis). Unfortunately,
such data is prone to several security threats and attacks, for
example, privacy and confidentiality breach. Although significant
progress has been made on securing biomedical data, most exist-
ing approaches yield long delays and cannot accommodate real-
time responses. This paper proposes a novel fog-enabled privacy-
preserving model called δr sanitizer, which uses deep learning to
improve the healthcare system. The proposed model is based on a
Convolutional Neural Network (CNN) with Bidirectional-LSTM
and effectively performs Medical Entity Recognition (MER). The
experimental results show that δr sanitizer outperforms the state-
of-the-art models with 91.14% recall, 92.63% in precision, and
92% F1-score. The sanitization model shows 28.77% improved
utility preservation as compared to the state-of-the-art.

Index Terms—Internet of Things, Fog Computing, Machine
learning, smart healthcare, privacy, sanitization.

I. INTRODUCTION

D Igital technologies, such as the Internet of Medical
Things (IoMT), big-data analytics, 5G, and Artificial

Intelligence (AI), have revolutionized critical diseases and
medical illness prevention, monitoring, and treatment [1].
IoMT with 5G-connected devices supplies medical aids with
new and advanced facilities. Patients and medical staff (doc-
tors, nurses, and health organizations) can use their mobile
devices to remain in contact, lowering the rate of physically
hospitalizing a patient. As such, the IoMT-based platforms will
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help gather health-related data and provide access to health
organizations to prevent, control, and mitigate the spread of
viral infections, e.g., COVID-19. In an IoMT smart healthcare
ecosystem, such massive data is synchronized to the cloud
for storage and analysis [2]. The cloud-based smart healthcare
ecosystem comprises of sensor layer and the cloud layer. The
sensor layer provides the patients’ credentials and sensory
data, which is then stored in the cloud [3]. This data may
be shared with health organizations, families, and authorized
parties for research purposes. It also enables the healthcare
facilities to be delivered to the isolated areas on time, at
reasonable prices. Smart healthcare systems use different de-
vices, such as wireless sensors, cameras, and controllers, to
allow patients’ automated recognition, awareness of the right
medication, and serious initial signals to detect health decline
(seizure, heart failure, test results, e.g., COVID-19 test and
temperature measurements etc.).

As anticipated in [4], current hospital-home healthcare
systems will turn into only home-centred systems by the year
2030. For example, the current COVID-related emergency has
already confined people/patients to their homes. As a result,
present off-line healthcare systems are re-shaping accordingly
into digital smart healthcare systems [5]. To meet these
evolutionary changes, advanced healthcare infrastructures and
technologies must be taken into account. However, such tech-
nological shift en route to pervasive smart healthcare systems
brings upon new challenges, such as security, efficiency in
terms of latency and energy consumption, inter-operability,
mobility, reliability and privacy [6].

In the current IoT cloud infrastructure, the mobility of things
needs further improvement. It covers only hospital/building
premises, which causes poor scalability and efficiency [7].
Moreover, connected devices and massive data’s pervasive-
ness bring congestion in the network and unwanted delay in
cloud-based smart healthcare infrastructure. Thus, the cloud
computing paradigm is not suitable for such infrastructures,
leading to fatal consequences. Therefore, fog computing can
be introduced between sensor devices and the cloud layer
to meet delay-sensitive health application needs. It provides
cloud-like services at the edge of the network. It works as
an intermediary computation layer, which provides scalability,
low latency, low power consumption, seamless mobility, and
many other advantages, e.g., as summarized in [8]. However,
both cloud and fog introduce new security threats to the smart-
heath domain. These attacks include (but are not limited to)
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confidentiality, integrity, anonymity, privacy, and data fresh-
ness.

A. Motivation

The electronic form of medical data (AKA Electronic
Medical Record (EMR) or Electronic Health Record (EHR))
is growing massively. It is generally classified into structured
(i.e., statistical databases, tables) and unstructured data (i.e.,
text, videos, images, and voice). For the safety of structured
medical data different security measures are used, for exam-
ple k-anonymity, l-diversity, t-closeness, Differential Privacy
(DP), and relaxed form of (DP) [9]. Since much clinical infor-
mation is text-based, it is inevitable to discover the solutions
to protect such data. Redaction is the initial step to mask
or remove any secret information from the piece to preserve
medical data. It completely changes the meaning degrades
the use of information. Thus, there is another way called
”sanitization,” which converts the most important phrases to
the least important ones, such as ”Corona”, can be masked by
”Virus.” The idea is extensively utilized to achieve the safety
measures for unstructured data. Many recognized methods
used for word-based articles are according to the analytical
concept of data. However, many other restrictions should be
considered. To detect the clinical equipment automatically
from the collection, this concept needs simple procedures.
Consequently, several Machine Learning (ML) techniques
have been used to detect medical entities, such as diagnosis,
testing, and treatments.

The Deep Learning (DP) models are the most dominant ones
for unstructured data classification [10], [11]. However, more
intelligent designs must be discovered to improve efficiency. In
most of the existing ML and DP-based solutions, the privacy
breaches along with utility issues are inevitable. Therefore, it
is important to design such a model, which may handle both
the issues effectively. Then, redaction-based techniques were
used to overcome issues related to manual anonymization [12].
The redaction of unstructured data is a process of removal
of sensitive terms from raw medical data being sensed or
acquired. However, removing sensitive terms may also change
the semantics of the underlying document. It may also affect
the quality of the document resulting in less usability and lead
to a privacy breach.

B. Our contributions

The Internet of Things (IoT) is a rapidly developing tech-
nology that seeks to provide ubiquitous access (at any time
and from any location) to a wide variety of devices through
the Internet. It serves as the foundation for various smart
applications, including automation and monitoring in smart
healthcare systems. Various technologies, such as fog com-
puting, contributes significantly to the concept of vast and
intelligent connectivity. It helps boost quality and depend-
ability by offering innovative computing options and resource
planning [13], [14]. Cloud services may help the IoT get inex-
pensive on-demand solutions for large data storage and heavy
processing. Unfortunately, there are still unsolved problems
in cloud-based IoT applications, such as high capacity client

access, fluctuating delay, safety, and less mobility and location
awareness [15]. Applications such as real-time health monitor-
ing, in particular, is highly delay-sensitive to cloud facilities.
Fog computing, which provides various services and numerous
resources to end-users at the edge of the network, has been
developed to solve these issues. It relies on local networks
rather than a central cloud architecture to create specialised
channels. It improves the end-user Quality of Service (QoS)
and user experience, guaranteeing decreased service latency. In
this paper, we proposed a fog computing-based privacy model
for smart healthcare using deep learning called δr sanitizer,
which considers a smart healthcare system realized in the
fog network to reduce latency for delay-sensitive medical
applications. The proposed scheme can handle heterogeneous
data collected from heterogeneous networks having different
data structures and types, such as numeric, alphanumeric, and
textual. The proposed MER minimizes latency and energy
consumption at the sensor (node) level. The suggested model
has a wide range of applications. Clinical entity detection
offers a wide variety of applications in the biomedical sector,
including proteins, genes detection, illnesses, and medica-
tion chemical formulae. It aids in optimising search queries,
the interpretation of clinical reports, and the protection of
biomedical data’s privacy [16]. Biomedical data privacy is a
relatively new field of study. It enables institutions, such as
hospitals, to share medical data (in a secure manner) with
the research groups without jeopardising patient confidentiality
[17]. While sharing medical data with researchers may help
improve healthcare and provide better treatments for illnesses,
it cannot be released in its entirety to preserve individuals’
privacy. To maintain confidentiality, it is necessary to identify
clinical entities accurately. Confidentiality is preserved when
clinical entities (disease, test, and therapy) are accurately
identified and sanitised (generalised). The main contributions
of the paper are as follows:

1) We present a novel fog-enabled privacy-preserving
framework called Deep Privacy to mitigate latency and
energy-consumption issues at the node-level by using
deep-learning-based Medical Entity Recognition (MER)
scheme with enhanced recognition accuracy by combin-
ing local and global contextual representation.

2) The proposed framework improves the privacy of un-
structured biomedical data by enforcing medical entity
sanitization, called δr-sanitization, a variant of sanitiza-
tion mechanisms that not only sanitizes the data but also
preserves its utility at maximum.

The rest of the paper is organized as follows: Section II
discusses the related work. In Section III, we detail the
proposed framework. Sect. IV discusses medical entity recog-
nition and Sect. V introduces enhanced sanitization model. In
Section VI, the numerical analysis and results are discussed.
In Section VII, the experimental analysis and discussion is
presented. And lastly, the conclusion and future work is given
in Section VIII.

II. RELATED WORK

Recently, contextual embedding-based models have been
proposed using both character-level and token-level represen-
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TABLE I: Notation description

Symbols Meanings
σ Sigmoid function
⊗ Element-wise product
Tanh Tangent-hyperbolic function
δ Privacy threshold
δr Random privacy threshold
SenTi Single sensitive term
SenT Sanitized terms
C T Clinical taxonomy
C Tn Lenght of clinical taxonomy
C Tgen Most Generalized clinical term
sanitize(SenT ) Generalized/sanitized sensitive term
MKB Clinical terms taxonomy

tation to improve MER accuracy, for instance Word2Vec [18],
GloVec [19], ELMO [20], Bert [21], and Bio-Bert [22]. How-
ever, These models require rigorous computational resources
and cause a high processing cost. Therefore, there is still a
need to explore the architecture of deep learning-based models
for achieving high recognition accuracy. Initially, Information
theoretic-based models were proposed for document saniti-
zation. One of these models is the local Information Content
(IC) that is used for sanitization. However, this model is biased
towards the local high-frequency occurrence of the terms [23].

Sanchez et al. proposed a novel privacy-preserving model,
based on sanitization, to overcome issues related to IC mod-
els in [24]. However, it has non-monotonically behavior for
available medical concepts‘ taxonomy. It also shows language
ambiguity [25]. Saha et al. [26] discussed the use of fog
layers in IoT-based healthcare systems and their usage in
dealing with EMRs. Zhao et al. [27] propounded a privacy-
preserving data aggregation scheme for edge-based VANETs.
It reduced computing and communication overhead at the node
level and also released the communication pressure on the
edge. However, there is still room for reducing computation
overhead on the cloud center. Similarly, Dong et al [28]
investigated an edge-based healthcare system in IoMTs to
minimize the system-wide cost in the edge-based healthcare
systems. However, MUs lead to deficient wireless channels
and computation resources.

For VANETs, Sui et al. [29] presented an edge-based
privacy-preserving data downloading technique. However, co-
operative downloading and a lightweight and cryptography-
based incentive required for resource-constrained devices.
Wang et al. [30] proposed a scheme using fog-based
content transmission and collective filtering for vehicles.
Bouchelaghem and Omer [31] proposed a privacy-preserving
mechanism using a pseudonym changing strategy for VNs,
where they can communicate autonomously. However, the sim-
ulation area used in this research is small and not suitable for
big cities. Guan et al. [32] proposed a public auditing scheme
for fog-to-cloud data storage integrity and privacy. However,
the scheme requires extra devices to mitigate computation
and throughput overheads. Moreover, it may lead to unwanted
homomorphic encryption.

A. Summary of Related Work

To summarize, ML-based mechanisms require immense pre-
processing and parameter tuning, which can be improved

using deep learning-based models. However, it is still needed
to explore various architectures, such as CNN, LSTM. Not
much work has been done in this area, so far, to the best of
our knowledge. Most of the proposed mechanisms either use
local or global context for MER. Having said that, if both
the local and the global contexts are conjoined, the detection
accuracy may be improved (as in our case). Despite that,
most of the mechanisms focus only on word embedding rather
than exploring promising (above mentioned) architectures
to improve accuracy. That is why significant improvement
has not been observed. Also, both the recognition and the
sanitization mechanisms are not implemented and used as a
single technique. Therefore, it is inevitable to propose a single
complete architecture that considers both. To this end, we
already proposed N-sanitization [17] without using the concept
of deep learning. We analyzed our previous technique also and
came up with a fog computing-based privacy model using deep
learning. Table 1 compares the proposed model with existing
works.

III. SYSTEM MODEL AND ARCHITECTURE

This section proposes a novel framework called Deep Pri-
vacy that enables the automatic detection and sanitization of
the medical entities for medical records (e.g., sensors‘ data,
reports, and medicines prescriptions). Since these documents
hold the patients’ data, it becomes mandatory to sanitize
before printing and transferring. Therefore, sanitization-based
approaches were proposed [17]. In sanitization, the sensitive
and most-concerned terms are masked with generic and less
certain terms. In this way, the unstructured medical data’s
privacy may be preserved against privacy breaches and threats.
Figure 1 shows the proposed architecture of fog-enabled Deep
Privacy framework is divided into four layers. In addition,
Fig. 2 shows the activity diagram (overall flow) of the pro-
posed framework. The detailed activity of the proposed model
(and layers) is discussed below:

1) Application layer: This layer targets the users of the
medical data that has been sensed from the sensor devices. The
users may be doctors, paramedical staff, the patient himself,
and his family. Third parties, such as different organizations
conducting research, are also a part of this layer. However,
they access sanitized data from the cloud, unlike the rest of
the users, accessing the fog layer’s data.

2) Cloud layer: The cloud layer receives privacy-preserved
(sanitized) data from the fog layer and provides permanent
storage for that. Third parties, such as researchers, publishers,
and pharmaceutical organizations, may request the cloud layer
data.

3) Fog Layer: The fog layer is introduced to minimize
latency for delay-critical real-time applications (e.g., in the
case of health emergencies), reduce power consumption, and
avoid congestion in the network backhaul [33]. The fog layer
acts as a control layer, responsible for medical data recognition
and privacy preservation. It comprises two main modules:
i) MER module to recognize unstructured data and ii) δr-
sanitized to sanitize the data, as shown in Fig. 3. It depicts
that detected sensitive terms are further sanitized in the fog
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TABLE II: Comparison of δr sanitizer with Related Works

Reference Cloud/Fog Deep Learning IoT Detection Sanitization Overhead
Energy Latency Computation Storage

[18] × X × X × X X X X
[22] × X × X × X X X X
[27] Fog × X × X × × × ×
[28] Fog × X × × × × × ×
[31] Cloud × X × X × X × ×
[22] × × × × X X × × X
[25] × × × X X X X X X

Proposed Fog X X X X × × × ×

Fig. 1: Proposed architecture of fog-enabled δr-Sanitizer.

node and forwarded to the cloud for permanent storage. This
sanitized data is accessible by third parties (researchers) via
the cloud for research purposes.

The data received from the infrastructure layer are sum-
marized in reports. The medical practitioner generated pre-
scriptions are saved transiently on this layer. In this way,
before sending the entire data to the cloud, only summarised
data is forwarded to save bandwidth and minimize latency.
The medical correspondents and patients can access that data
directly for real-time responses from the fog. The data is
sanitized before sending it to the cloud layer for permanent
storage. After this, the sanitized data may be shared with
third parties for research purposes. This data is secured using
the Deep Privacy mechanism. Suppose the data security is
breached during the transition from the fog layer to the cloud.
In that case, the adversaries cannot get the real unsanitized
data. However, the security of data sent from the infrastructure
layer to the fog is beyond this paper’s scope. We assumed that
the data sensed from a device and transit to the fog layer was
secured.

Firstly, the unstructured data (sensor and textual data)
is forwarded to the MER module for recognizing medical

Fig. 2: Activity diagram of proposed framework.

entities. To recognize them accurately, a new concept is
considered, which is the combination of local context using
CNN and global context using LSTM with CRF. Secondly,
the recognized entities are shipped to δr-Sanitizer module for
sanitization along with δ. δ is a threshold that is used to control
the privacy and utility trade-off. For instance, while preserving
privacy in the sanitization process, a term is generalized. For
example, the term ”COVID” may be generalized as ”Virus.”
Thus, there is a trade-off between privacy and utility. The
more is the generalization. The less is the utility [9]. Thereby,
δ is used to balance between them. If the value of δ is
high, the privacy will increase, and the utility will decrease,
and vice versa. Therefore, we have not set a value of δ.
We left it to the data-holder to set the value according to
their requirements. After receiving inputs from the MER
module and δ from the requester, δr-Sanitizer sanitizes the
recognized entity using SNOMED-CT (knowledge-base [34])
for generalization. Lastly, the medical terms are replaced by
sanitized terms and shared on the cloud.

4) Infrastructure layer: This layer consists of smart sensor
devices that are attached to a patient on the move and at
rest. These sensors keep observing patients‘ vitals and keep
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Fig. 3: Flow of sequence in δr-Sanitizer.

Fig. 4: The proposed deep neural networks-based MER model.

on sending the data to the fog layer. The data is sent to
the healthcare correspondents. In case of any abnormal and
emergency, the response is sent back to the patient or their
family or caretakers.

IV. MEDICAL ENTITY RECOGNITION

For medical entity recognition, we deployed a variant of
RNN, called Bi-LSTM, an alternative to RNN with CRF. It is
suitable for such issues in terms of efficiency, as mentioned
in [35]. Moreover, it can avoid gradient varnishing and hold
the long-distance dependencies of the related information. It
emphasizes more on the information, which is related to the
global context than the local ones. Hence, a new design is
considered using CNN with Bi-LSTM to grab local and global
context more efficiently. Figure 4 illustrates the MER model
with four layers. The components of the model are given
below:

Input layer: The eventual occurrence of each word is
recorded using two separate token presentations called; token-
level and character-level representations. This representation is
more often called word embedding and character embedding.
The token saves the relative data in the vector space, and
the grammatical information is recorded by character-level
representation. The token-level representation uses the already

utilized Consecutive Bags of Words (CBoW) and skip-gram
models [35]. The character-level representation uses bidirec-
tional LSTM. Consequently, the token- and the character-
level representations are combined to couple every word. This
combined representation is transferred to the contextual layer.

Contextual layer: This layer produces local context for
every token representation utilizing CNN. The token repre-
sentation from the input layer is taken by CNN and generates
contextual information. Three different window sizes (i.e., 3, 5,
7) are used to achieve an efficient local context. These window
sizes generate different contextual information, which plays an
important role in efficiency by transiting from confined to a
wider context [10]. The local context of the said windows
is coupled together for efficacy. After this, the particular
representation is transferred to the bi-LSTM layer to acquire
the global context. Based on the integrated CNN data, the
bi-LSTM generates global data in sequence. For instance,
a phrase P = (p1, p2, p3, . . . , pn) with every text CNN
represents local data as M = (m1,m2,m3, . . . ,mn). This
relative data is taken by bi-LSTM as an input and produces
global presentation as GL = (gl1, gl2, gl3, . . . , gln), where
GLn = [GLNfn, GL

N
bn]

N is a fusion of output for all the
backward and forward passes of LSTM.

Attention layer: This layer couples CNN-generated local
context representation with the global context representation
generated by Bi-LSTM. After the coupling of the context, it
forwards it to the output layer.

Output layer: The output layer takes the sequence GL =
(gl1, gl2, gl3, . . . , gln) from attention layer as an input and
uses CRF to predict the best possible label sequence for
each token S = (s1, s2, s3, . . . , sn). For example, an input
training data-set GL and all the variables of the CRF model
(θ) can be computed by increasing the log-likelihood by using
Equation 1:

C(θ) =
∑

(p,s)∈GL

log(cp(s|gl, θ)) (1)

Where, s denotes order label for string of tokens denoted by
P , cp, is a conditional occurrence of s, given, that, P and θ.
If we assume that Pθ(gl, s) is the result of the label sequence
s for every token in the phrase, then, the standardization of
Pθ(gl, s) is an approximation of conditional probability cp.
To get the highest spot of labels, which have the closest mate,
the CRF design combines emission matrix M along with a
transition matrix N for the calculation of the result of the
label sequence Pθ(gl, s) as follows (Equation 2):

Pθ(gl, s) =

n∑
q=1

(Msq,q+Qsq−1,sq ) (2)

In Msq,q , q represents the probability of token (word) glq with
the label sq . The Qsq−1,sq represents probability of the word
glq−1 with the label sq−1 along with glq with a label sq .
Dynamic programming can be a promising solution to amplify
the log-likelihood of input training information set GL. To get
the ideal label sequence for a specific input phrase, the Viterbi
algorithm can be used [35].
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V. SANITIZATION

The proposed δr-sanitizer is an enhanced sanitization model
that addresses the problems of conventional IC-based sani-
tization [24]. The result shows that the proposed model is
capable of sanitizing sensitive information more accurately.
It reduces the issues associated with ambiguous language,
the non-logical nature of the global IC computation, extra
sanitation (which results in the least data utilization), and
minimizes the computation cost. We used the SNOMED-CT
to sanitize the previously detected sensitive terms (SenT )
by replacing them with their generalized Sanitized(SenT )
terms. Every sensitive term (SenTi) should be safeguarded,
so privacy is not disclosed to the attacker. The threshold is not
required in the proposed model (e.g., the threshold, beta, is
utilized in [17]). Conventionally, the threshold is set according
to the least IC available among the terms, which may over-
fit the sanitizing model and result in degraded utility [25].
We introduced δ as a limen for sanitation, influenced by K-
anonymity, L-diversity, T-closeness, Differential Privacy (DP),
and Relax form of DP [9]. These are popular and well-
practised models used for privacy-preserving of structured
data-sets. The δ is adjustable by the data-holders for the protec-
tion of the information as per their requirement and according
to the sensitivity of each medical datasets. Equation 3 is used
to set the threshold to user-defined δ.

Sanitized∀SenTi∈SenT = C Tr(SenTi) (3)

Where rand(1, δ), δ ≤ gen and C T =
C T1, C T2, ..., C Tgen. In Equation 3, we proposed
the basic formulation for δ as a threshold. If the value of δ
is less than the length of its generalized hierarchy (C T ),
all those sensitive terms SenTi ∈ SenT are generalized/
Sanitized randomly up to the user-defined δ level.

Sanitized∀SenTi∈SenT = Sn(SenTi) (4)

Where δ > gen. In Equation 4, we show that if the value
of δ > gen (length of its generalized hierarchy or clinical
taxonomy), then all those sensitive terms SenTi ∈ SenT are
replaced with their most generalized terms, which is C Tgen.
From the set of generalized/sanitized terms sanitize(SenTi)
for each sensitive term SenTi, the generalized term that fulfills
the conditions of equation 5 is selected as optimal generalized
term.

Sanitized(SenTi) = ((SenTi ∈ C Ti−gen)

∧ (C Tr(SenTi), r(l, δ), δ = 1− gen,
if δ ≤ gen) ∨ (C Tgen(SenTi), δ = n, if δ > gen)) (5)

Eq. (5) is a combination of Equation 3 and Equation 4.
Based on the afore-mentioned equations, the privacy bounds
of proposed sanitization is defined by the following lemmas,
which limit the disclosure risk of an adversary:

Proposition 1: If the privacy threshold δ is less than n,
then the generalization/sanitization level of SenTi is randomly
selected between 1 to δ, where the probability of threshold
selection is P = 1/δ.

Proof: The generalization of SenTi is 1 to δ. In contrast if
it is δ + 1 to n, the probability of δ is always greater than
1. This contradicts the rule where the sum of all probability
should equal to 1. Hence, the generalization threshold cannot
be δ + 1 to n.

Proposition 2: If δ is greater than C Tn, then SenTi is a
value of most generalized term in hierarchy C Tgen against
a sensitive term, where the probability of threshold selection
is P = 1/C Tn.
Proof: The C Tn is the total number of generalized terms
for ith sensitive term. A threshold δ value greater than C Tn
refers to the selection of a generalized term that does not exist.
Therefore, the generalized term should be selected between 1
and C Tn with P = 1/C Tn threshold probability.

Algorithm 1 Sensitive terms sanitizer (δr).
Require: SenT, MKB, δ

1: δr − Sanitizar(SenT,MKB, δ)
2: {
3: for each SenTi ∈ SenT do
4: if SenTi ∈MKBs then
5: C T = Get Clinical Taxonomy(SenTi,MKB)
6: C Tn = length(C T )
7: if δ ≤ C Tn then
8: r = rand(1, δ)
9: sanitize(SenTi) = C Tr

10: else
11: sanitize(SenTi) = C Tgen

12: end if
13: else
14: sanitize(SenTi)← C Tgen

15: end if
16: sanitizedi ← sanitize(SenTi)
17: end for
18: return sanitizedlist
19: }

The entire functionality of the proposed δr-Sanitizer is
demonstrated in Algorithm 1. We have previously published
a detailed formal verification and complexity analysis of the
proposed sanitization algorithm in [36]. The δr-Sanitizer is fed
by the sensitive medical entities (SenT ). For the extraction
of generalised medical entities, the medical knowledge-based
data (MKB) is provided as input together with a user-defined
threshold (δr). It produces a list of generalised words for each
input parameter. Algorithm Line 1 specifies the inputs,i.e.,
knowledge-based terms (in this instance, SNOMED-CT), a
list of sensitive words, and the privacy threshold δ. Then it
is determined whether each sensitive term SenTi is defined
in MKB in Lines 2 and 3. It obtains its full hierarchy of
generalisations at line 5. It also obtains the length of the
generalised hierarchy for each SenTi on line 6. On Line 7,
it is checked whether the threshold δ is less than or equal
to the hierarchy’s length C T or not. It retrieves generalized
words between 1 and δ at random, in lines 8 and 9. It is
generalized to as ”finding” otherwise, on line 11. But if the
line 4 condition is false, the most generalised word, in line
14, is used. Line 16 stores each generalised term one after
the other, and line 18 returns the whole list to the caller
model. The suggested method is more cost-effective, having
an O(n) time complexity than [17], which has a O(n2) time
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complexity. For each sensitive word based on the available
domain hierarchy, the proposed model increases security by
randomly generating the value of δ. As a result, it is almost
difficult for an opponent to deduce the sensitive term from
the generalised ones.

Proposition 3: The probability of finding δ is P (δ) =
1/C T for a single term, and P (δ(SenTi)) = 1/C Tn for
all terms. Therefore,

PSenT =

C Tn∏
i=i

P (δ(SenTi))

.
Proof: The probability of disclosure risk is always less than or
equal to one. Therefore, for each P (C Tn) < 1, the combined
probability of all terms PSenT is between 0 to 1 and starts
approaching zero as the number of terms increases.

Example: For instance, P (δ1) = 0.1 and P (δ2) = 0.2, then,
the PSenT = 0.02. Similarly, P (δ1) = 0.1, P (δ2) = 0.2,
P (δ3) = 0.3, and P (δ4) = 0.05, then, the PSenT = 0.0003.
It show, when we increase the number of sensitive terms,
the probability of revealing original terms decrease toward to
zero. This exemplifies that if there are more sensitive terms,
in a document, the probability of original term disclosure will
decrease and making it hard for an adversary to successfully
breach the confidentiality of the sensitive data.

VI. PERFORMANCE EVALUATION

This section details the Simulation Settings of the experi-
mentation.

A. Configuration Settings

In simulations, we utilize the n2c2-2010 data-set [37] aimed
at extracting medical concepts, e.g., health reports, medication
lists, and test results. The evaluation is conducted by adopting
the following performance metrics:

1) Evaluation Matrices:: To estimated clinical corpus, pre-
cision, recall, and F1-score are used as evaluation matrices.
The explanation of each evaluation criteria is given below:
• Precision: The Precision (AKA specificity) is the total

true positive proportion to the whole of the true positive
(tp) and false positive (fp) instances. To increase preci-
sion, the true positive rate is maximized, and the false
positive should be minimized. The false-positive rate is
devastating in the medical field. The proposed model aims
to achieve the highest precision ratio. The formula to cal-
culate precision is given below: precision = tp/tp+ fp

• Recall: The recall (aka sensitivity) is the proportion of
true positive instances to the whole of true positive
and false-negative rates. To increase the recall, the true
positive rate is maximized, and the false-negative rate is
minimized. The formula for the recall is given below:
recall = tp/tp+ fn

• F1-score: F1-score takes effect (harmonic mean) of both
the precision and the recall. The more the F1-score, the
more the precision and recall. The value of the F1-score is
usually biased towards the lower notwithstanding of recall

or precision. The formula to evaluate F-1 is as follows:
F − 1 = 2 ∗ precision ∗ recall/Precision+ recall

TABLE III: Comparision of propsed MER model with current state-of-the-art
models.

Methods Recall Precision F-1 score
Glov+ LSTM+CRF [38] 83.6 84.0 83.8
Word2Vec+ LSTM+CRF [35] - - 85.8
ElMo+ LSTM+CRF [20] 86.2 87.4 86.8
Bio-BERT+ LSTM+Inference layer [22] 85.4 87.5 86.4
BERT+ LSTM+Inference layer [21] - - 89.5
Proposed (CNN-BiLSTM+CRF) 91.14 92.63 92.0

To build the recognition model for unstructured medical
data, the Python built-in library called keras [39] is utilized.
These three measures before preparation are followed to get
accurate results:

1) Reducing noise: The stop words, Punctuation, and white
spaces are cleared.

2) Sentences Padding: The sentence padding (i.e., 250) is
used to make input phrase size alike.

3) Normalization: The corpora is turned to lower cases to
get the word normalization.

A pre-trained Word2Vec model expresses the token level
illustration. The default token embedding size is used as set
out in the pre-trained Bio-Word2Vec model. The character
embedding size is randomly defined between the -1 to 1 range
and trained with Bi-LSTM. Four hundred dimensions for word
embedding and 200 dimensions for character embedding are
used. The dimension size for token embedding is 250, and
for the character embedding, 150 are not changeable. Both
embeddings are joined, resultant as 600-dimensional size, and
transferred to the following contextual layer. The three CNN
models with three window sizes (i.e., 3, 5, and 7) are trained
in the contextual layer. The regional contextual illustration of
every CNN design attained 200 (transformed from 600 to 200)
dimensions as input by combined embedding. This illustration
of every local contextual CNN design is combined again with
600 dimensions and transferred to Bi-directional LSTM to
generate worldwide content. Then, the regional and worldwide
content is transferred to CRF to estimate the labels. In the final
step, the BIO (Beginning of entity, Intermediate of an entity,
and end of an entity) tagging scheme [35] and the CRF are
combined for sequence labeling.

B. Experimental Results

We now discuss the obtained numerical results:
1) MER detection accuracy: Table III presents the com-

parison among proposed MER and the up-to-date state-of-
the-arts. We compared our model with [38], [35], [20], [22],
and [21]. Figure 5 illustrates that the recall and precision
results. The figure shows that the recall value for the proposed
model is 91.14% with 92.63% precision. Whereas, recall value
for [38], [20], and for [22] is 83.6 percent, 86.2 percent, and
85.5 percent, respectively. Similarly, the precision percentage
is 84 percent, 87.4 percent, and 87.5% for the said models,
respectively. The F1-score is depicted in Fig. 6, which illus-
trates that for the proposed model is 92 percent. whereas, it is
83.8, 85.8, 86.4, 86.8, and 89.5
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Fig. 5: Comparison of recall and precision among proposed MER and existing
model.

Fig. 6: Comparison of F1-score among proposed MER and existing model.

2) δr-sanitizer utility preservation: Figure 7 presents
the comparison of utility preservation among the proposed
model, [24], [25], and with the baseline provided by Beau-
mont Hospital, Dublin, Ireland. The utility preservation in the
proposed model is 56.19 percent, for β-based models, it is
27.42, and for the baseline, it is 67.24 percent. The result
shows that compared to the β-based models, the proposed
model preserved more utility. However, the proposed utility
preservation is 11.05% less than the baseline given by the
hospital. Whereas, there is a 39.82% difference in baseline
and β-based models. In the provided baseline, the threshold
value is least, whereas, in the proposed model, we set the
threshold value as 3. Figure 8 represents different variants of
δr-sanitizer with respect to different δ values. It also shows
the utility preservation comparison of these variants with β-
based sanitizer. The utility preservation percentage for β-
based sanitizer is 27.42 percent. Whereas, It changes with the
changing value of δ in the proposed mechanism. It is 56.19,
68.84, and 80.92% for the δr-sanitizer, with δ equal to 3, 2,
and 1. It is obvious that the value of δ influences the utility
preservation of a model. That is why we made it open for the
data-holder to set.

3) Latency: We compared latency between fog and cloud-
based smart healthcare systems. Figure 9 illustrates that the
response time of a fog-based application is less than that of
a cloud-based application. The response time (in our case)
may be defined as when a sensor device generates data and
sends it to the upper layer (i.e., either to the fog or to the

Fig. 7: Comparison of utility preservation using baseline sanitization, β-based
sanitizer, and δr-sanitizer.

Fig. 8: Comparison of different variants of δr-sanitizer with β-based sanitizer.

cloud), and response against that received data is triggered.
As shown in the figure, we generate an equal number of
messages sent to the fog and the cloud. The response time in
fog-based applications is less than the cloud-based. For the first
5,000 requests (messages), the time is 5 and 7 milliseconds for
fog and cloud, respectively. We kept on increasing messages
and noted time after every 5,000 messages, as shown in the
figure. For 100,000 messages, the response time of a fog-based
application is 32 milliseconds, whereas, for the same number
of messages, the cloud-based application took 36 milliseconds.
On average, there is a 3-millisecond difference between them
for all the responses.

VII. DISCUSSIONS

To better protect patients from the spread of infectious
diseases, we developed a new deep learning-based sanitization
method to identify and sanitise out clinical entities. The
suggested model considers both global and local context,
whereas previous research solely considered global context.
We used three baseline systems as a benchmark to assess
the proposed model (using i2b2-2010 data): (a) CRF model,
(b) BLSTM model (i.e., token-level representation), and (c)
BLSTM model (i.e., character- and token-level representation).
We make comparisons to current models for a thorough review.
While the CRF performs well in terms of Exact criteria with
84% of F1-score (as shown in Table III), it still has a long
list of steps, such as pre-processing and tuning of parameters
to reach a satisfactory accuracy. The implementation of deep
learning (i.e., CNN and RNN) models is the answer to
the troubles of CRF. In the context of CRF, deep learning
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Fig. 9: Latency comparison between fog and cloud-based application.

models can improve accuracy. For example, the LSTM-CRF
model delivers an F1-score of 86% and 92% on Exact and
Inexact evaluation criteria, respectively. The traditional ap-
proaches using contextual embedding provide an F1-score of
87.90%, whereas the basic embedding models have an F1-
score of 84.86%. While standard embedding (i.e., GloVec
and word2vec) seems to have a 2.3% advantage over the
traditional approach in this instance, ELMo and BERT have
a smaller advantage (i.e., about 1.5%). While spending extra
computational resources and effort, advanced and sophisticated
embedding boosts model performance by just 2.3%.

The LSTM and its many variants placed the most emphasis
on the global context. They sometimes neglected to include
the local context. The information in the medical records is all
connected and has to be gathered. While the BERT embedding
may help certain LSTM-based models, the overall quality
of the findings is not significant. The new context considers
both the local and global context and aims to identify the
clinical entities. The BiLSTM model captures global context,
whereas the CNN model captures local context. Higher accu-
racy may be achieved with BERT with advanced embedding
by investing in additional computer resources, yielding a 1.2%
improvement in accuracy. In comparison, our model is better,
achieving 4.5% greater outcomes than current state-of-the-art
algorithms. Compared to the CRF-based model, the method
presented in this paper yields an 8% improvement in accuracy.
The information in this study enables the incorporation of
the local context, which is used to identify the biological
entities. Additionally, in the sanitization phase, Information
Content (IC)–based approaches often result in incorrect out-
comes, as noted in [17]. The suggested sanitization strategy
surmounts the limitations of IC-based procedures, as noted
in [23], [25], [17]. Moreover, the IC of ”V irus” cannot
differentiate between a computer and biological viruses. It
gives confusing results since it overestimates the IC value.
Further, in these experiments, a fixed privacy threshold (β)
was utilised. Nevertheless, the trade-off between privacy and
data usefulness is an individual one. The individual’s privacy
threshold should be adjustable to accommodate their individual
needs.

VIII. CONCLUSIONS AND FUTURE WORK

The introduction of fog computing in smart healthcare
infrastructures provides a promising solution at the edge of
the network when it comes to latency. It may help advance
the present medical research and diagnose various diseases
or find the solution to future medical field challenges. It is
important to apply privacy-preserving methods to secure the
patients‘ confidential clinical information before providing it
for research purposes. However, present studies show privacy
violations and less data utilization due to improper handling
of utilization and privacy issues. The mechanism used fog-
enabled deep learning models and a novel sanitation mecha-
nism for preserving the privacy and utility of medical entities
concerning data-holder needs. The Deep Privacy framework
improved detection accuracy by 92% in comparison to other
deep learning models. Improvement of 56.19% had been seen
in the utility rate of sanitized medical documents with a value
of δ equal to 3 with reduced latency.

Although the presented approach provides flexible privacy
protection via user-defined privacy thresholds, it falls short of
providing full semantic privacy protection, such as differential
privacy. Thus, one potential future study path is to enhance
the suggested solution’s semantic privacy assurance and math-
ematical verification. Additionally, the suggested approach
sanitizes the sensitive words only. Another potential study area
is the identification and sanitization of semantically related
words.
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