31 research outputs found

    Influence of surfactants on the absorption of drugs

    Get PDF

    Dysregulated Autophagy Leads to Oxidative Stress and Aberrant Expression of ABC Transporters in Women with Early Miscarriage.

    Get PDF
    Early miscarriage (EMC) is a devastating obstetrical complication. ATP-binding cassette (ABC) transporters mediate cholesterol transfer across the placenta and enhance cell survival by effluxing substrates from target cells in the presence of stressors. Recent evidence reports an intricate interplay between autophagy and ABC transporters. We hypothesized that dysregulated autophagy and oxidative stress (OS) in the placenta leads to abnormal expression of membrane transporters contributing to poor pregnancy survival in EMC. We determined mRNA and protein expression of autophagy genes (Beclin-1/Bcl-2/LC3I/LC3II/p62) and ABC transporters (ABCA1/ABCG1/ABCG2) in placentae from EMC patients (n = 20), term controls (n = 19), first trimester (n = 6), and term controls (n = 5) controls. Oxidative/antioxidant status and biomarkers of oxidative damage were evaluated in maternal serum and placentae from EMC and healthy controls. In EMC, placental expression of LC3II/LC3I as well as of the key autophagy regulatory proteins Beclin-1 and Bcl-2 were reduced, whereas p62 was increased. Both in the serum and placentae of EMC patients, total OS was elevated reflected by increased oxidative damage markers (8-OHdG/malondialdehyde/carbonyl formation) accompanied by diminished levels of total antioxidant status, catalase, and total glutathione. Furthermore, we found reduced ABCG1 and increased ABCG2 expression. These findings suggest that a decreased autophagy status triggers Bcl-2-dependent OS leading to macromolecule damage in EMC placentae. The decreased expression of ABCG1 contributes to reduced cholesterol export to the growing fetus. Increasing ABCG2 expression could represent a protective feedback mechanism under inhibited autophagy conditions. In conclusion, dysregulated autophagy combined with increased oxidative toxicity and aberrant expression of placental ABC transporters affects materno-fetal health in EMC

    Patient Monitoring by Abnormal Human Activity Recognition Based on CNN Architecture

    No full text
    Human action recognition has emerged as a challenging research domain for video understanding and analysis. Subsequently, extensive research has been conducted to achieve the improved performance for recognition of human actions. Human activity recognition has various real time applications, such as patient monitoring in which patients are being monitored among a group of normal people and then identified based on their abnormal activities. Our goal is to render a multi class abnormal action detection in individuals as well as in groups from video sequences to differentiate multiple abnormal human actions. In this paper, You Look only Once (YOLO) network is utilized as a backbone CNN model. For training the CNN model, we constructed a large dataset of patient videos by labeling each frame with a set of patient actions and the patient’s positions. We retrained the back-bone CNN model with 23,040 labeled images of patient’s actions for 32 epochs. Across each frame, the proposed model allocated a unique confidence score and action label for video sequences by finding the recurrent action label. The present study shows that the accuracy of abnormal action recognition is 96.8%. Our proposed approach differentiated abnormal actions with improved F1-Score of 89.2% which is higher than state-of-the-art techniques. The results indicate that the proposed framework can be beneficial to hospitals and elder care homes for patient monitoring
    corecore