45 research outputs found

    ESTIMATION OF MEASUREMENT UNCERTAINTY OF SEAFLOOR ACOUSTIC BACKSCATTER

    Get PDF
    In the last three decades, Multibeam echo sounders (MBES) have become the tool of choice to study the seafloor. MBES collects two distinct types of data: bathymetry that provides topographic details of the seafloor and backscatter that has the potential to characterize the seafloor. While the uncertainty associated with MBE bathymetry has been well studied, the uncertainty in MBES backscatter measurement has received relatively little attention, hindering the improvements in quantitative analysis of backscatter data. Both acquisition and processing stages can introduce uncertainty in the final seafloor backscatter products. Application of well-established uncertainty quantification principles to seafloor backscatter data is challenging for several reasons: the uncertainty sources are not well known, they vary on a case-by-case basis, and standards do not exist for acquisition and processing. This dissertation focuses on assessing uncertainty in backscatter measurements and is comprised of four separate but related studies that identify and address the challenges of uncertainty quantification of backscatter measurements. The first study (Lucieer et al., 2018) which is presented as background, describes an end users’ survey identifying key uses and challenges of backscatter data acquisition and processing. The study identified that consistency and repeatability of backscatter measurements is a major constraint in the use and re-use of backscatter. The second study (Malik et al., 2018), identified the sources of uncertainty and categorized them as significant or insignificant based on various use cases. The most significant sources of uncertainty were found to be inherent statistical fluctuations in the backscatter measurement, calibration uncertainty, seafloor slope and water column absorption estimation. While calibration uncertainty remains the main issue in advancing the quantitative use of the backscatter, the other sources were also shown to cause large uncertainties. These include non-standardized methods used to account for seafloor slope and absorption, and data interpretation errors due to missing background information about the processing procedures. With a comprehensive list of uncertainty sources established, two uncertainty sources, seafloor slope and processing errors, were examined further in the third (Malik, 2019) and the fourth (Malik et al., submitted) study respectively. Seafloor slope corrections are important to correct for both the area insonified and the incidence angle. Both of these corrections are adversely affected if seafloor slope corrections are not applied. Even in cases where the seafloor slope is used, further uncertainty can occur if the highest resolution bathymetry is not used. The results from this study showed that for the purpose of accurate slope corrections, the spatial scale of backscatter data should be selected based on the best available bathymetry. The majority of end users depend on third-party software solutions to process the backscatter data. The fourth study evaluated the output of three commonly used software packages after inputting the same data set and found that there were significant differences in the outputs. This issue was addressed by working closely with software developers to explore options to make the processing chain more transparent. Two intermediate processing stages were proposed and implemented in three commonly used software tools. However, due to proprietary restrictions, it was not possible to know the full details of the software processing packages. Differing outputs likely result, in part, from the different approaches used by the various software packages to read the raw data. Quality assessment and uncertainty quantification of MBES backscatter measurements is still at an early stage and further work is required to develop data acquisition and processing standards to improve consistency in the backscatter acquisition and processing. Publications: Lucieer, V.; Roche, M.; Degrendele, K.; Malik, M.; Dolan, M.; Lamarche, G. User expectations for multibeam echo sounders backscatter strength data-looking back into the future. Mar. Geophys. Res. 2018, 39, 23–40. doi:10.1007/s11001-017-9316-5. Malik, M.; Lurton, X.; Mayer, L. A framework to quantify uncertainties of seafloor backscatter from swath mapping echosounders. Mar. Geophys. Res. 2018, 39, 151–168. doi.org/10.1007/s11001-018-9346-7. Malik, M. Sources and Impacts of Bottom Slope Uncertainty on Estimation of Seafloor Backscatter from Swath Sonars. Geosciences 2019, 9, 183. doi: 10.3390/geosciences9040183. Malik, M.; Schimel, A.; Masetti, G.; Roche, M.; Deunf, J.L.; Dolan, M.; Beaudoin, J.; Augustin, J.M.; Hamilton, T.; Parnum, I. Results from the first phase of the Backscatter Software Inter-comparison Project. Geosciences. Submitted

    Assessing Bottom Gear Impact in the WGOM Closure Area: A Multifaceted Approach

    Get PDF
    Mashkoor Malik presented the results of a UNH Center for Coastal and Ocean Mapping (CCOM) study of the seafloor of the WGOMCA. Objectives The objectives for the CCOM study were to: • Construct a bathymetric map of Jeffrey’s Ledge to serve as a framework for subsequent studies. • Test the potential use of multibeam sonar to monitor fishing gear impacts. • Determine if it is possible to observe closure impacts with multibeam sonar

    U.S. Law of the Sea Cruise to Map the Eastern Mendocino Ridge, Eastern Pacific Ocean

    Get PDF

    Investigation of bottom fishing impacts on benthic structure using multibeam sonar, sidescan and video

    Get PDF
    Bottom fishing gear is known to alter benthic structure, however changes in the shape of the sea floor are often too subtle to be detected by acoustic remote sensing. Nonetheless, long linear features were observed during a recent high-resolution multibeam sonar survey of Jeffreys Ledge, a prominent fishing ground in Gulf of Maine, located about 50 km from Portsmouth, NH. These marks, which have a relief of only few centimeters, are presumed to be caused by bottom dredging gear used in the area for scallop and clam fisheries. The extraction of these small features from a noisy data set (including several instrumental artifacts) presented a number of challenges. To enhance the detection and identification of these features, data artifacts were identified and removed selectively using frequency filtering. Verification was attempted with sidescan sonar and video surveys. While clearly visible on the sidescan sonar records, the bottom marks were not discernable in the video survey. The inability to see the bottom marks with video may be related to the age of the marks, and has important ramifications about appropriate methodologies for quantifying gear impact. Results from multibeam sonar, sidescan sonar and video surveys suggest that the best methodology to deal with inspection of bottom fishing marks is to integrate data in a 3D GIS-like environment

    Advanced Mid-Water Tools for 4D Marine Data Fusion and Visualization

    Get PDF
    Mapping and charting of the seafloor underwent a revolution approximately 20 years ago with the introduction of multibeam sonars -- sonars that provided complete, high-resolution coverage of the seafloor rather than sparse measurements. The initial focus of these sonar systems was the charting of depths in support of safety of navigation and offshore exploration; more recently innovations in processing software have led to approaches to characterize seafloor type and for mapping seafloor habitat in support of fisheries research. In recent years, a new generation of multibeam sonars has been developed that, for the first time, have the ability to map the water column along with the seafloor. This ability will potentially allow multibeam sonars to address a number of critical ocean problems including the direct mapping of fish and marine mammals, the location of mid-water targets and, if water column properties are appropriate, a wide range of physical oceanographic processes. This potential relies on suitable software to make use of all of the new available data. Currently, the users of these sonars have a limited view of the mid-water data in real-time and limited capacity to store it, replay it, or run further analysis. The data also needs to be integrated with other sensor assets such as bathymetry, backscatter, sub-bottom, seafloor characterizations and other assets so that a “complete” picture of the marine environment under analysis can be realized. Software tools developed for this type of data integration should support a wide range of sonars with a unified format for the wide variety of mid-water sonar types. This paper describes the evolution and result of an effort to create a software tool that meets these needs, and details case studies using the new tools in the areas of fisheries research, static target search, wreck surveys and physical oceanographic processes

    Effects of a Large Fishing Closure on Benthic Communitites in the Western Gulf of Maine: Recovery from the Effects of Gillnets and Otter Trawls

    Get PDF
    The recovery of benthic communities inside the western Gulf of Maine fishing closure area was evaluated by comparing invertebrate assemblages at sites inside and outside of the closure four to six years after the closure was established. The major restriction imposed by the closure was a year-round prohibition of bottom gillnets and otter trawls. A total of 163 seafloor sites (~half inside and half outside the closure) within a 515-km2 study area were sampled with some combination of Shipek grab, Wildco box corer, or underwater video. Bottom types ranged from mud (silt and clay) to boulders, and the effects of the closure on univariate measures (total density, biomass, taxonomic richness) of benthos varied widely among sediment types. For sites with predominantly mud sediments, there were mixed effects on inside and outside infauna and no effect on epifauna. For sites with mainly sand sediments, there were higher density, biomass, and taxonomic richness for infauna inside the closure, but no significant effects on epifauna. For sites dominated by gravel (which included boulders in some areas), there were no effects on infauna but strong effects on epifaunal density and taxonomic richness. For fishing gear, the data indicated that infauna recovered in sand from the impacts of otter trawls operated inside the closure but that they did not recover in mud, and that epifauna recovered on gravel bottoms from the impact of gillnets used inside the closure. The magnitudes of impact and recovery, however, cannot be inferred directly from our data because of a confounding factor of different fishing intensities outside the closure for a direct comparison of preclosure and postclosure data. The overall negative impact of trawls is likely underestimated by our data, whereas the negative impact of gillnets is likely overestimated
    corecore