University of New Hampshire University of New Hampshire Scholars' Repository

Center for Coastal and Ocean Mapping

Center for Coastal and Ocean Mapping

6-15-2009

U.S. Law of the Sea Cruise to Map the Eastern Mendocino Ridge, Eastern Pacific Ocean

James V. Gardner University of New Hampshire, Durham, jim.gardner@unh.edu

Mashkoor A. Malik University of New Hampshire

Follow this and additional works at: https://scholars.unh.edu/ccom Part of the <u>Oceanography and Atmospheric Sciences and Meteorology Commons</u>

Recommended Citation

Gardner, James V. and Malik, Mashkoor A., "U.S. Law of the Sea Cruise to Map the Eastern Mendocino Ridge, Eastern Pacific Ocean" (2009). *Center for Coastal and Ocean Mapping*. 1256. https://scholars.unh.edu/ccom/1256

This Report is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

CRUISE REPORT

NOAA Ship Okeanos Explorer

U.S. Law of the Sea Cruise to Map the Eastern Mendocino Ridge, Eastern Pacific Ocean

CRUISE EX0903

May 5, to May 26, 2009 San Francisco, CA to San Francisco, CA

James V. Gardner and Mashkoor Malik

Center for Coastal and Ocean Mapping/Joint Hydrographic Center University of New Hampshire Durham, NH 03824

June 15, 2009 UNH-CCOM/JHC Technical Report 09-001

Table of Contents

Introduction	3
The Multibeam Echosounder Systems and Associated Systems	5
Ancillary Systems	6
MBES Data Processing	7
The Area: The eastern Mendocino Ridge	8
Daily Log	10
References Cited	26
Table 1. Initial system sensor offsets	6
Table 2. Offset corrections determined by Patch Test	6
Table 4. Conversion table of NOAA raw.all to UNH file names by Julian Day	27
Table 6. Location of XBT casts	
Table 5. Cruise Statistics	
Appendix 1. Cruise calendar	
Appendix 2. Cruise personnel	34
Appendix 3. Color maps of bathymetry and acoustic backscatter	35

Introduction

This cruise had two separate objectives; the primary objective was to test the new EM302 multibeam system aboard the NOAA Ship Okeanos Explorer. If the tests prove successful, the secondary objective was to map the eastern Mendocino Ridge (Fig. 1) for the U.S. Law of the Sea bathymetry program. The exhaustive study of the U.S. data holdings pertinent to the formulation of U.S. potential claims of an extended continental shelf under the United Nations Convention of the Law of the Sea (UNCLOS) (Mayer, et al., 2002) did not identify this area as one of the regions where new bathymetric surveys are needed. However, the ECS Task Force considered the Mendocino Ridge might be a potential extension for the U.S. The Mayer et al. (2002) report recommended that multibeam echosounder (MBES) data are needed to rigorously define (1) the foot of the slope (FoS), a parameter of the two UNCLOSstipulated formula lines, and (2) the 2500-m isobath, a parameter of one of the UNCLOS-stipulated cutoff lines. Both of these parameters, the first a precise geodetic isobath and second a geomorphic zone, are used to define an extended continental shelf The Center for Coastal and Ocean Mapping/Joint Hydrographic Center claim. (CCOM/JHC) of the University of New Hampshire was directed by the U.S. Congress, through funding to the U.S. National Oceanic and Atmospheric Administration (NOAA) to conduct the new surveys and archive the resultant data.

The section of Mendocino Ridge, properly called the Gorda Escarpment, was previously mapped between 125°W and 128°W using the GLORIA long-range sidescan sonar (EEZ-SCAN, 1986; Masson et al, 1988) and then with a SeaBeam 2100 multibeam (Dziak et al., 2001). However, none of these data were considered accurate enough or extensive enough for a UNCLOS submission.

The NOAA Ocean Exploration Program made available the 224-ft, 2298 metric ton ship *Okeanos Explorer* (Fig. 2) with a hull-mounted Kongsberg Simrad EM302 MBES and as a Knudsen 3260 3.5-kHz CHIRP sub-bottom profiler. Early testing of the Knudsen 3260 sub-bottom profiler demonstrated severe cross talk between the sub-bottom profiler and the MBES because of the lack of synchronization between the two systems. Consequently, the Knudsen profiler was not used during the mapping phase of the cruise. The schedule for the cruise called for 5 days of testing and 16 days of mapping with the EM302 MBES.

The UNH representative was responsible for collecting and processing the bathymetry and acoustic-backscatter aboard ship. The UNH representative, in collaboration with the NOAA Cruise Coordinator aboard ship, was responsible for the overall cruise planning, both before and during the cruise.

The cruise began with a 23-hr, 230-km, transit from San Francisco, CA to an area south of Mendocino Ridge (Fig. 1). A full patch test, including a calibration of an XBT cast with a CTD cast, was performed in this area and was followed by 12 days of progressively mapping the eastern part of the Mendocino Ridge. The cruise mapped a total of 14,136 km² in 8.5 survey days and collected 6028 line km of MBES lines with an average speed of 9.2 kts. A summary of the cruises is given in Table 1.

Figure 1. Location of eastern Mendocino Ridge and transit track (black line) from San Francisco, CA to the patch test area.

Figure 2. NOAA Ship *Okeanos Explorer (R337)* used to map the eastern Mendocino Ridge.

The Multibeam Echosounder System and Associated Systems

A hull-mounted Kongsberg Simrad EM302 MBES system was used to map bathymetry and acoustic backscatter. The EM302 30-kHz MBES system transmits a 0.5° wide swath and forms up to 432-1° receive apertures over a maximum swath of 150°. A thermosalinograph with an intake somewhat distant from the transducers was used to measure the salinity and water temperature at the sonar array and from those data a sound speed was calculated. The High Density Equidistant beamforming mode was used for the EM302 to produce seafloor footprints of each receive beam that are equal spaced along each ping. Bottom detection on all beam is determined by both phase and amplitude. However, for beams at near-normal incidence, the depth values are determined by center-of-gravity amplitude detection but for most of the beams the depth is determined by interferometric phase detection. Individual soundings along track are spaced approximately every 20 m, regardless of survey speed. The manufacturer states that, at the 7-ms pulse length (deep mode), the system is capable of depth accuracies of 0.3 to 0.5% of water depth. A pulse length of 7 ms was used in depths shallower than 3000 m but the pulse length was increased to 20 ms in deeper depth to increase the signal-to-noise ratio.

The motion reference units (MRU) was an Applanix POS/MV 320 version 4 for instantaneous heave, pitch and roll and heading. The EM302 system can incorporate transmit beam steering up to $\pm 10^{\circ}$ from vertical, and yaw and roll compensation up to $\pm 10^{\circ}$. The Applanix POS/MV was interfaced with a C&C Technologies C-Nav differential-aided GPS (DGPS) receiver that provides real-time correctors to the DGPS position fixes, providing an accuracy of $<\pm 0.5$ m. All horizontal positions were georeferenced to the WGS84 ellipsoid and vertical referencing was to instantaneous sea level.

The Simrad EM302 is capable of simultaneously collecting full time-series acoustic backscatter along with the bathymetry. This represents a time series of backscatter values across each beam footprint on the seafloor. If the received amplitudes are properly calibrated to the outgoing signal strength, receiver gains, spherical spreading, and attenuation, then the calibrated backscatter should provide clues as to the composition of the surficial seafloor.

All systems are referenced to a stable reference mark located close to the POS/MV sensors. The position of each system was surveyed relative to the reference mark providing a table of initial offsets (Table 1). A patch test was run immediately prior to the mapping to determine any static offset corrections (Tables 1 and 2).

Water-column sound-speed profiles were calculated from casts of Sippican model Deep Blue (760 m maximum depth and extrapolated to deeper depths) expendable bathythermographs (XBTs) to measure temperature as a function of depth routinely every 6 hours and between scheduled casts as required. A Sea Bird Electronics model SBE-9+ CTD was used to calibrate the XBTs during the patch test. The two temperature sensors (serial no. 5001 and 5017) and the two conductivity sensors (serial no. 3451 and 3449) were last calibrated by Sea Bird Electronics on May 29, 2008. Derived sound-speed profiles derived from the two systems (CTD vs XBT) were compared between the systems to calibrate the XBT (Fig. 3).

Location Offsets			A	ngular Offs	ets	
Sensor	Forward	Stbd	Down	Roll	Pitch	Heading
POS 1	0.00	0.00	0.00			
POS 2	0.00	0.00	0.00			
POS 3	0.00	0.00	0.00			
Tx tdr	6.147	1.822	6.796	0.00	0.00	359.98
Rx tdr	0.00	0.00	0.00	0.00	0.00	0.03
Attitude 1	0.00	0.00	0.00	0.00	-0.70	0.00
Attitude 2	0.00	0.00	0.00	0.00	0.00	0.00

Table 1. Initial system sensor offsets

Draft 4.81 m bow, 4.49 m stern Stand-alone heading 0.00

Offset	Value
roll	0
pitch	0
yaw	0
latency	0

Table 2. Offset corrections determined by Patch Test

Figure 3. Comparison of sound speed calculated from an XBT and CTD cast at the patch test.

Ancillary Systems

Although a Knudsen 3260 3.5-kHz high-resolution subbottom profiler is installed on the ship, it has not been synchronized with the EM302 MBES. The lack of synchronizaton results in severe interference on the MBES data. In addition, the 3260 can record the subbottom data only in a proprietary Knudsen KEB format or a Knudsen version of SEG-Y. Although SEG-Y is the standard format for seismic data, the KEB format is non-standard. Tests both before and during the initial transit from San Francisco shows that the latest version of the Knudsen PostSurvey software and Chesapeake Technologies SonarWizMap4 can read the Knudsen SEG-Y files. But, because of the severe interference, the subbottom profiler was not used during the mapping.

MBES Data Processing

The raw Simrad multibeam bathymetry and acoustic backscatter data were processed aboard ship using the University of New Brunswick's SwathEd software suite, version 20080916. Each Simrad raw.all file was collected by the onboard Kongsberg Simrad SIS data-acquisition system. Once a line was completed, the raw.all file was copied to a server that could be accessed by the UNH computer via a shipboard network. Each raw.all file was renamed from the system-generated file name to *Mendocino line_n_raw.all* (see Table 3) so that later each file could be easily identified to the area. The line numbers commenced with Mendocino_line_transit1 and then Mendocino_line_1 when the actual mapping began. Each raw.all file is composed of individual data packets of beam bathymetry (range and angle), beam average and full time-series acoustic backscatter, navigation, parameters, sound-speed profiles, orientation and sound speed at the transducer. The first step in the processing separates each of these data packets into the individual files.

The second step in the processing plots the navigation file so that any bad fixes can be flagged. Once this step is completed, the validated navigation is merged with the bathymetry and acoustic backscatter files.

The third step involves editing (flagging) individual soundings that appear to be fliers, bad points, multipaths, etc. The entire file of soundings is viewed and edited in a sequence of steps through the file. Once the bathymetry file has been edited, the valid individual soundings are gridded into subarea DTM maps and the co-registered valid acoustic backscatter full beam time series is assembled into a file and gridded into subarea mosaics.

The entire region to be mapped was subdivided into 70 subarea bathymetry maps and (Fig. 4, upper panel). Each subarea map was designed to maximize the spatial resolution allowed by the mapped water depths within the area. The region was also subdivided into larger Mendocino East and Mendocino West regional maps and mosaics with 40 m/pixel spatial resolution (Figs. 4, lower panel).

Figure 4. (upper panel) Seventy one subarea maps. (lower panel) Subdivision of regional area and U.S. EEZ boundary (red)

The Area: Eastern Mendocino Ridge

The area to be mapped during the Mendocino Ridge cruise was defined by the westward extension of the ridge beyond the U.S. EEZ (Fig. 4 lower panel, black polygons). In order to satisfy the requirements of UNCLOS Article 76, the region between the ~1000 and 5000-m isobaths were mapped to provide the necessary bathymetry for the development of a potential U.S. extended continental shelf claim beyond the U.S. EEZ.

The general region is located in the eastern North Pacific Ocean west of Cape Mendocino, CA (Fig. 1). Physiographically, the Mendocino Ridge is a narrow, linear ridge standing more than 1 km above the basin floor with a summit generally more than 1000 m deep. Several published studies divide Mendocino Ridge into the seismically active Gorda Escarpment that extends east from Gorda Ridge and the seismically inactive Mendocino Ridge that extends west from Gorda Ridge (Fig. 5), although the feature is clearly one continuous ridge. Geologically, the ridge represents the plate boundary between the Pacific, North American and Gorda Plates (Atwater, 1979; 1989).

Figure 5. Overview map of physiographic features in Mendocino Ridge area.

Rocks dredged from the ridge range in composition from tholeiitic and alkaline basalts (Engel and Engel, 1963; Krause et al., 1964; Fisk et al., 1993; Kela et al., 2007). Fisk et al. (1993) report rounded basalt pebbles and cobbles dated at ~11 Ma and suggest the rounding is the result of erosion in a beach environment. Consequently, they propose the Mendocino Ridge has subsided ~1000 m in the past 11 Ma. This interpretation is in opposition to that of Silver (1971) and Gulick et al. (2001) who used seismic data to suggest north-south compression and underthrusting at the Gorda Escarpment by the Gorda Plate. The Silver (1971) and Gulick et al. (2001) interpretations require uplift (transpression) of the Gorda Escarpment.

Deep Sea Drilling Project Leg 5 drilled two sites (Sites 33 and 34) just south of the mapped area. Site 33 is located at the far distal reaches of the Delgada Fan and has a mixed lithology of pelagic and hemipelagic sediment. Site 34 is located well within the turbidite province of Delgada Fan (McManus et al., 1970). Interestingly, both sites collected volcanic ash in the Pleistocene sections.

It cannot be over emphasized that this cruise represents a cruise-of-opportunity for the U.S. UNCLOS Bathymetry Project to systematically collect high-quality multibeam bathymetry of the Mendocino Ridge for the U.S. UNCLOS efforts. The primary objective of the cruise was to trouble-shoot the new Kongsberg Maritime EM302 multibeam echosounder. However, the NOAA Office of Ocean Exploration offered the UNH U.S. UNCLOS mapping project as much as two weeks of *Okeanos Explorer* time to map the ridge at no cost to the U.S. UNCLOS project *if the testing proved successful*. But, because testing was the first priority, it was understood that if the MBES system did not perform up to specifications, then little or no UNCLOS mapping would get done. In the end, the testing was successful and almost all of the required area of the eastern Mendocino Ridge was mapped.

Daily Log

JD 125 (Tuesday, May5, 2009)

The morning and early afternoon were spent on a noise test at the dock. The plan was to power down the ship and have only the UPS running the scientific lab's computers. When the Chief Engineer shut down power to the ship, the UPS tripped into a bypass mode and all power was cut. The UPS failed. The ETs found that one of the fuses on the UPS had been only hand tightened and may have arced. The UPS was repaired and the test began. The test included running the Kongsberg BIST noise tests and recording the noise from the hull hydrophone as each of the mechanical and electrical systems were brought on line. Although the hull hydrophone data may have been corrupted because the hydrophone was not powered on, the Kongsberg BIST noise tests show that noise fluctuates, apparently randomly, from ~40 dB to more than 90 dB, although the fluctuation is not correlated with any of the ships mechanical or electrical systems.

The second test was to scope the power feeds into the Kongsberg EM302 TRU box to investigate whether the box was receiving clean power or power spikes. The scope test showed very clean power to the TRU box with no spikes.

It was concluded that no more tests were necessary, so the ship was prepared for departure. The ship departed San Francisco at 1515 L (JD 125 2215 Z) and headed west away from the weather and for deep water to begin the transit to the Mendocino Ridge patch test site.

JD 126 (Wednesday, May 6, 2009)

The EM302 MBES was run unattended through the night as we transited down the continental slope. The system was in in-between mode, $\pm 60^{\circ}$ swath width, forced deep mode and no spike filter. The EM302 did not do well keeping bottom detection on the steep slope, losing bottom most of the way down. Once in the basin at ~3800 m, the system had difficulty keeping bottom lock in automatic mode, but did fairly well when forced to deep mode. The acquired swath was consistently ~90° although the swath width was forced at 120°. There was quite a lot of ship motion with heaving at ± 2.5 m, pitching of $\pm 5^{\circ}$ and rolling at $\pm 10^{\circ}$. The bow had been ballasted down to ~-1.5° and the ship was not plowing through the seas, so bubble sweep did not appear to be a problem. Ship speed was 9.4 knts and the ping period was 4.8 s/ping. Only 23 starboard beams were recorded; all the other 193 starboard beams were rejected by the EM302 acquisition system (Fig. 6). In addition, there was no apparent correlation between ship motion and loss of bottom detection.

All systems were shut down at 1130L (1830Z) so that the ETs could balance the load on the science-services UPS. The systems were brought back on line at 1700L. after the repair to the UPS. Two ground faults were discovered during the repairs, so a Kongsberg BIST test was run once the MBES was brought back up. A series of consecutive BIST tests after the UPS repair showed noise levels below 60 dB on all tests. The seas calmed throughout the afternoon and evening.

Figure 6. Beams (upper left panel) and swaths (upper right panel) from 60 pings in 3500 m water depths. Data are from transittest-1_raw.all file.

JD 127 (Thursday, May 7, 2009)

The EM302 was run throughout the night in Extra Deep mode. The seas were only ± 3 ft and the wind was only ~10 kts; almost perfect conditions. The processed data from the previous night shows a lot of heave (Fig. 7) and what appears to be sector-boundary artifacts in the data (Fig. 7). Consequently, transit test line 46 was run collecting EM302 data in Extra Deep mode, FM, dual swath, in-between mode. In addition, the heave was recorded from the POS/MV so that it could be post-processed in CARIS. This test is to determine whether the POS/MV v.4 TrueHeave is performing properly.

heave artifacts

Figure 7. Transit test line 43 showing heave. Water depth 4400 m.

Transit test line 47 recorded changed from transit test line 46; it is in in-between mode and ping mode is Automatic. The system chose Deep mode when placed in Automatic. All other settings are same as transit test line 46. Figure 8 shows the results.

Figure 8. Unedited swath profiles from transit test line 43 showing pronounced side-lobe artifacts (arrows) at the three sector boundaries.

Transit line 46 was run in Extra Deep mode and transit line 47 was in Deep mode for comparison (Fig. 9). Transit line 48 in equiangle mode, FM, dual ping, Auto ping mode.

Figure 9. Comparison of Extra Deep mode (line 46) and Automatic (*i.e.*, Deep) mode (line 47).

Transit test line 49 set up in equiangle beam spacing, FM and Dynamic modes. The system chose Very Deep mode in 4400 m water depths.

We reached the patch-test site at 1200L and by 1246L (1946Z) the CTD was in the water for the initial calibration run for sound speed. The cast took 5 hours and was completed at 1700L. The comparison confirmed that data from the Sippican Deep Blue XBT can be used to calculate an accurate sound speed for the upper 800 m of the water column (Fig. 10).

Figure 10. Comparison of sound speed calculated from a Deep Blue XBT and a Sea Bird CTD.

After the CTD was completed, we mapped due north over Mendocino Ridge. Once out of the sediment and onto the hard basalt of the ridge, the artifacts disappeared and bottom detection improved considerable. It became readily apparent that the problems we've been having with bottom detection has occurred when we were collecting data in low-impedance sediments.

We changed plans our intended plan and layed out a long mapping line along the summit of Mendocino Ridge, starting roughly at the mid-point of our proposed mapping UNCLOS polygon.

The weather stayed beautiful all day and the swell was <4 ft.

The end of the transit line to the beginning of the first long E-W line is line 9. Line 9 was started late in the evening.

JD 128 (Friday, May 8, 2009)

The day was spent mapping Line 11 heading east along the crest of Mendocino Ridge. The data are high quality with no bottom-detection problems. The weather was sunny with 25 kt winds but only a 4-ft swell. By afternoon the seas had built to \sim 6 ft and were building as we sailed east towards the California Current. The data continued to be pretty high quality because we were mapping over the basaltic crest of Mendocino Ridge with it's high acoustic impedance.

By 1430L the seas were enough to cause some bubble sweep and cavitation on the thermosalinograph. However, these effects were not enough to seriously degrade the data quality.

The first cross check was run using the Line 11 crossing of the dipline. The results were very good (Fig. 11), especially considering all the rough topography of Mendocino Ridge. The cross-check test involved 146,922 soundings and the mean water-depth difference is 1.9 m ($2\sigma = \pm 41.3$ m) in a mean water depth of 3214 m (0.06% of water depth).

Figure 11. Cross-check errors using Line 11 vs dipline. The interior rectangle is the area of comparison.

By 1800 L, the seas and wind had continued to build and the Captain suggested we terminate Line12, transit to the north 5 km, and then begin Line 17 mapping west where the weather was reported to be much better. Throughout the afternoon and evening we experienced rolls >10° and heaves of ± 2 m.

JD 129 (Saturday, May 9, 2009)

Woke up to relatively calm seas (swells of 3 ft) and not too much ship motion. Data quality is high. The last several minutes of Line 19 and all of Line 20 were corrupted because the Angular Coverage mode was in the runtime parameters was set in Manual coverage at $\pm 75^{\circ}$, whereas it should have been set in Auto. After a few day of fiddling with the settings, the best settings for mapping are shown in Figure 12.

itime parameters		
ounder Main Sound Speed Filter and Gains Data Cleanir	ng Javad and Trimble ATH logging Simulator Su	rvey Information
Sector Coverage	Depth Settings	Stabilization
Port Sta	board Force Depth (m): 3300	Pitch stabilization
Max. angle (deg.): 75 75	Min. Depth (m): 500	Along Direction (deg.)
Max. Coverage (m): 5000 500		- III Along Direction (deg.): 10
Angular Coverage mode: AUTO	Max. Depth (m): 4000	Yaw Stabilization
Beam Spacing: HIDENS EQDIST	Dual swath mode: DYNAMIC	Mode: REL. MEAN HEADING
	Ping Mode: DEEP	Heading: 300
	☑ EM enable	Heading filters

Figure 12. The runtime-parameter settings that produced the best data.

Line 22 is the first segment of an east-running line on the north side of Mendocino Ridge. The seas continued to be mild but the data began to suffer because of water depth (~3200 m) and pelagic sediments (low reflection coefficient) (Fig. 13)

Figure 13 Screen grab of processing Line 22 collected in 3200 m water depth in pelagic sediments. Settings were Very Deep, Dual Swath, FM, high-density equiangular, Auto Angular Coverage, Max power.

JD 130 (Sunday, May 10, 2009)

The weather was nice with a 2- to 3-ft swell and a light wind; almost perfect conditions for mapping. By evening, it was downright calm. We continued on an eastward course. Lines 23 and 24 have severe refraction. We crossed to the east of Escanaba Trough of Gorda Ridge and the sediments became much more reflective (turbidites from the Eel & Columbia Rivers). The higher reflectivity allowed very strong bottom detection.

Line 27 ended the long east line at the survey polygon eastern boundary at 1800 L (0100 Z). We slowed to a crawl and powered off all electronics while the ET once again fixed ground faults in the UPS.

JD 131 (Monday, May 11, 2009)

Line 29 was run to the west until we had to break line at 0300 L to transit to Eureka to pick up a Kongsberg Simrad engineer. During the transit, the ETs continued to have problems with ground faults in the UPS. All scientific power was taken off the UPS during the night.

Around 1030 L, the ETs were working on the disk drives and immediately the EM302 was not able to record any pings. It could transmit, but not receive.

We finally got the Knudsen 3260 CHIRP subbottom profiler to work on the transit into Eureka. The settings that worked in shallow water on shown on Figure 14.

Figure 14. Set-up parameters for Knusden 3260 CHIRP subbottom profiler.

We arrive Eureka Harbor at 1230 L, picked up the Kongsberg engineer and we departed Eureka at 1345 L.

The Kongsberg engineer (Jared Harris) got the EM320 running at 1835 L by swapping around the #1 and #4 transmit boards, even though the BIST tests showed all the boards passed. We decided to allow him a night's sleep, so we transited to the eastern boundary of the survey polygon and mapped to the west along the crest of Mendocino Ridge throughout the night. Lines 30, 31, 32 and 33 were testing and the transit back to the eastern boundary of the survey polygon.

Line 34 is the beginning of the W line that was run over night.

JD 132 (Tuesday, May 12, 2009)

The Kongsberg engineer spent the morning installing a new patch to the version 3.6.1 SIS software and the data quality improved considerably. The late morning and all afternoon was spent collecting data south of the Mendocino Ridge in pelagic sediment (low impedance) in 4500 m water depths. The data quality was excellent, at 7 kts and even at 10 kts. The settings were as before except the Along Direction was set at 5°, pushing the receive beams 5° forward of nadir.

The weather conditions continued to be ideal for mapping. We mapped Mendocino Ridge filling in holidays throughout the afternoon and evening.

JD 133 (Wednesday, May 13, 2009)

Weather continued to be calm with swell <2 ft. Perfect mapping conditions. The MBES worked through the night unattended and collected high-quality data. However, the swath width continued to be less than anticipated, typically the swath was only 3.5 x water depth in 1750 m of water ($\pm ~64^{\circ}$ swath), 2.9 x water depth in 2300 m and 2 x water depth in 3400 m.

At 0915 L the MBES stopped pinging during Line 48. It stopped pinging a few hours earlier, but then, after about a dozen cycles, it started pinging again. This time it did not start up again. The temperature at the TRU was checked, but looked fine. The KM engineer started working on the case.

It appears that one or more of the receive boards is damaged, most likely because of the power supplied to the TRU is not coming from the UPS, but has bypassed the UPS. The ground faults of several days ago apparently affected one of the receive boards and it finally failed. All the transmit boards pass the BIST test, but each one fails in one slot or the other. The Seattle office of Kongsberg does not have a receive board on hand, so the replacement board must come from Norway. If the engineer can't get the system working, the fallback plan is to have the KM engineer remove two of the receive boards and reconfigure the EM302 to 1° transmit beam and 2° receive apertures so we can eventually resume collecting data.

By dinnertime, the engineer had isolated the problem to a communication problem between the disk drive and the main EM302 unit. Evidently, if there is a choke-up communicating with the disk, the EM302 stops beam forming. Wires were restrung, switches checked out and the transmit-receive boards were all checked. The system was still in the 0.5° x 1° mode and it was fired up at 1945 L and it ran. We next ran two N-S lines, one over the other, on the shelf in ~300 m water depths. The system seemed to be fine. So, we ran off the shelf and ran a line west along the south of Mendocino Ridge to see how it works in deep water and pelagic sediments.

JD 134 (Thursday, May 14, 2009)

Another fine day for mapping; calm seas and wind. Testing in water depths of ~300 m looked promising so we traveled to deeper water and line 49 was run at 9 kts heading west along the southern Mendocino Ridge.

The seas got lumpy in the afternoon and evening but the data quality did not suffer. We mapped west out to ~4500 water depths and reran line 42 with the latest patches and settings to determine if these were an improvement over the original patch installed by the KM engineer. Projecting the beams 5° forward greatly reduces the specular nadir return.

JD 135 (Friday, May 15, 2009)

The racetrack lines were run throughout the night and morning. The main comparison was between ship lines 14 (my line 56) and 1 line 18 (my line 60) (Fig. 15). The settings for the two lines are shown in the table below:

Line	Software version	settings		
14	1.4.6	Auto coverage	Auto mode	Pitch 2°
18	1.4.5	Auto coverage	Auto mode	Pitch 2°

Gains & Filters

Spike filter: Strong Range Gate: Normal Penetration: Medium Slope and Sector Tracking Normal Incidence Sector Angle from Nadir: 12°

Figure 15. Comparison of beams and pings for ship line 14 (line 56) (upper two panels and ship line 18 (line 60) (bottom two panels).

The patch test was completed at 2100 L and we transited to the north of Mendocino Ridge to begin mapping to the east on a return to Eureka, CA to drop off the Kongsberg engineer and the video technicians.

A comparison of the DTMs created from the two racetrack lines clearly shows software version 1.4.5 does not reject valid data in the outer beams compared to

software version 1.4.6 (Fig. 16). A cross-check analysis of the DTM from ship line 18(60) vs the data from ship line 14(56) gave a mean depth difference of -1.3 m ($\sigma = \pm 48.7$ m) in 4517 m water depth, or a mean depth precsion of 0.03% of water depth. A difference surface shows the differences are randomly distributed over the analyzed area with no correlation with nadir, outer beams or along-track patterns.

More work was done on the UPS in the morning after completing the racetrack testing. Once the UPS work was completed and the MBES was put back onto the UPS, we proceeded to run a patch test.

The pitch and roll part of the patch test was run on N-S lines (lines 63 and 64) that crossed from the deep (~4450 m) southern basin to the shallower (~3000 m) northern basin. A roll test was run in the racetrack area (lines 58 and 60) in the deep the southern basin and showed no offset. Timing was run on lines 64 and 65 and showed no offset. Data from adjacent lines of the meandering channel along the proximal northern basin show that there is no yaw offset.

Figure 16. DTMs for ship line 14 (56) (upper panel) and ship line 18 (60) (lower panel.

JD 136 (Saturday, May 16, 2009)

The night watch began mapping on a line running east on the north side of Mendocino Ridge. After several hours of mapping, they realized the new swath did not overlap the previous data. So, they broke the line, moved it south, and resumed mapping. Mapping continued throughout the morning in lumpy seas and clear skies.

Experimentation shows that the dual swath mode in ~3000 m water depths does not have enough time to charge the transmit capacitors so full power is not achieved. It is best to force the system out of dual swath mode in depths deeper than ~3000 m (depending on bottom strength).

We stopped logging the EM302 at 1030L to experiment with the Knudsen triggering problem. After an unsuccessful test to have the EM302 delay and trigger

the Knudsen 3260, we transited back to the break-off point and resumed mapping east along the northern part of Mendocino Ridge at 1600L.

The east-running line 71 was completed at 2125L. On the transit to Eureka, we crossed over Eel Fan and onto the slope. The water column display (Fig. 17) began to show what appears to be gas in the water column at ~1845 m water depth, slightly advected to the north, presumably by currents. The apparent gas plume emanated from a large margin failure with very high acoustic backscatter (Fig. XX).

Figure 17. Apparent gas in the water column (red arrow) shown in the watercolumn display (lower panel).

Figure 18. (upper panel) DTM showing area of apparent gas in water column (red arrow). (lower panel) Acoustic backscatter of same area, showing high backscatter.

JD 137 (Sunday, May 17, 2009)

A short line was mapping running west and then was terminated for the transit to Eureka to disembark the Kongsberg engineer, video engineers and one watchstander (Hillary Hall). Ms. Hall said she was advised by the ship nurse to depart in Eureka because she was having a reaction to some medications she was taking.

The disembarkation was completed by 0915L and we transited to the SE corner of the Mendocino Ridge survey to begin mapping to the west. Line 82 began the west-running line at the SE corner of the bottom of the East survey. The seas were pretty lumpy all afternoon and evening but the data quality in 2000 m water depths did not suffer much. That said, we still had to take the EM302 out of Auto mode and force it to Very Deep mode to keep bottom detection.

JD 138 (Monday, May 18, 2009)

The wind and sea calmed down during the night and the morning was relatively quiet. The MBES ran all night in Manual/Very Deep mode in 4000 to 4500 m depths without any intervention. Swath widths in these depths is $\sim 1.6 \text{ x WD}$.

A switch of power to the repaired UPS required shutting down the MBES for about an hour starting at 0900L. The line was terminated, the one-hour switch to UPS was completed, and we doubled back to continue the line. The line was resumed (line 87) at 1100L.

JD 139 (Tuesday, May 19, 2009)

Calm morning; perfect for mapping. The afternoon got cloudy and breezy and a little lumpy. We continued mapping in the eastern half of Mendocino Ridge, filling in holidays and preparing for the long line to the western half. The long line west (line 96) was started at 1600 L. This is the southern-most, and last, line of the East section of Mendocino Ridge.

JD 140 (Wednesday, May 20, 2009)

Swells up to ~ 5 ft and choppy seas all night and all day. Lots of bubble sweep during the night. Had to terminate the line and spent an hour to replace another fuse in the UPS. Spent the morning mapping the southern extent of the large volcanic field. The EM320 was put in manual Extra Deep at 4600 m and kept there, giving a swath of 1.4 x water depth.

The East block of Mendocino Ridge was completed at 1900 L and we began a long line along the ridge crest in the West block.

A crossline check of Line 2 vs Line 105 shows a mean error of 6 m ($\sigma = \pm 41$ m) or 0.13% of water depth in 4600 m water depths (Fig. 19)

JD 141 (Thursday, May 21, 2009)

The day was calm, bright and perfect weather for mapping. The system spent the night and day in Auto Very Deep Mode in ~4300 m depths and needed no intervention. The entire day was spent on the first long line in the Mendocino West block.

At ~1145L the POS crashed; that ended Line 109. It took about 5 minutes to get the POS back online.

We stopped mapping at the western end of the Western block and ran Line 111 to the SW to search for water deeper than 5000 m to see what depth the EM302 finally could not get bottom detection.

Figure 19. Crossline check between Lines 2 and 105.

The results of the deep-water extinction test is shown in Table 5. Once the test was completed, we transited back to the western border of the Western block and mapped a line eastward to the north of the previous mapped lines. We resumed the mapping at 2100L.

nadir depth (m)	swath width (x WD)	mode
5150	1.3	Extra deep
5150	1.6	Very deep
5313	1.6	Very deep

Table 5. Results of deep-water extinction test

JD 142 (Friday, May 22, 2009)

Breezy, clear and cool with a ~5-ft swell causing some pitch and heave. Data quality still high but pitching is creating some bubble sweep even though the swells are not large. Slowed to ~8 kts but that didn't make much difference. Switched to Manual Very Deep mode and that stopped the dropped pings because of heave and pitch. We continued to map in the western block of Mendocino Ridge. The seas got rougher during the afternoon, which caused a lot of bubble sweep and bottom-detection loss.

JD 143 (Friday, May 23, 2009)

The night and morning were foggy, a little lumpy causing some pitching but it died down by 1100 L. Data quality is high in Auto (Very Deep) mode with a 3° forward pitch.

JD 144 (Saturday, May 24, 2009)

A beautiful and calm day that is perfect for mapping. The data quality is excellent and the system has been in Auto mode all day. Line 119 was terminated so that we could map back to the east and complete mapping the section of the ridge before we had to transit back to San Francisco.

JD 145 (Sunday, May 25, 2009)

The day was a bit lumpy but the data quality was excellent. Line 122 ended the mapping of eastern Mendocino Ridge at 0930 L. We began the transit to San Francisco.

References Cited

- Atwater, T., 1970, Implications of plate tectonics for the Cenozoic tectonic evolution of western north America. Geological Society of America Bulletin, v. 81, p. 3513-3536.
- Atwater, T., 1989, Plate tectonic history of the northeast Pacific and western North America, *in* Winterer, E. L., Hussong, D. M., and Decker, R. W., (eds.), The Eastern Pacific Ocean and Hawaii: Geological Society of America, Boulder, Colorado, The Geology of North America, v. N, pp. 21-72.
- Dziak, R.R., Fox, C.G., Bobbitt, A.M., and Goldfinger, C., 2001, Bathymetric map of the Gorda Plate: structural and geomorphological processes inferred from multibeam surveys. Marine Geophysical Researches, v. 22, p. 235-250.
- EEZ-SCAN Scientific Staff 1986, Atlas of the Exclusive Economic zone, western conterminous United States. U.S. Geological Survey Misc. Investigations Series I-1792, 152 pp.
- Engel, C.G. and Engel, A.E.J., 1963, Basalts dredged from the northeastern Pacific Ocean. Science, v. 140, p. 1321-1324.
- Fisk, M.R., Duncan, R.A., Fox, C.G., and Witter, J.B., 1993, Emergence and petrology of the Mendocino Ridge. Marine Geophysical Researches, v. 15, p. 283-296.
- Gulick, S.P.S., Meltzer, A.A., Henstock, T.J., and Levander, A., 2001, Internal deformation of the southern Gorda plate: Fragmentation on a weak plate near he Mendocino triple junction. Geology, v. 29, p. 691-694.
- Kela, J.M., Stakes, D.S., and Duncan, R.A., 2007, Geochemical and age constraints on the formation of the Gorda Escarpment and Mendocino Ridge of the Mendocino transform fault in the NE Pacific. Geological Society of America Bulletin, v. 119, p. 88-100.
- Krause, D.C., Menard, H.W., and Smith, S.M. 1964, Topography and lithology of the Mendocino Ridge, Journal of Marine Research, v. 22, p. 236-249.
- Masson, D.G., Cacchione, D.A., and Drake, D.E., 1988, Tectonic evolution of Gorda Ridge inferred from sidescan sonar images. Marine Geophysical Researches, v. 10, p. 191-204.
- Mayer, L., Jakobsson, M, and Armstrong, A, 2002, The compilation and analysis of data relevant to a U.S. Claim under United Nations Law of the Sea Article 76: A preliminary Report. Univ. of New Hampshire Technical Report, 75p.
- McManus, D.A., Burns, R.E., et al., 1970, Initial Reports of the Deep Sea Drilling Project, v. 5, U.S. Government Printing Office, Washington, D.C.
- Silver, E.A., 1971, Tectonics of the Mendocino Triple Junction. Geological Society of America Bulletin, v. 82, p. 2965-2978.

JD	Data	NOAA file name	UNH file name	Notos
	Folder	.all	raw.all	INOLES
126	090506	0000_20090506_001600	Mendocono_line_SFtest-1	testing
	090506	0001_20090506_030243	Mendocino_line_transittest2	in basin @ 3700 m
	090506	0002_20090506_033243	Mendocino_line_transittest4	
	090506	0003_20090506_040243	Mendocino_line_transittest5	
	090506	0004_20090506_040345	Mendocino_line_transittest6	
	090506	0005_20090506_050257	Mendocino_line_transittest7	
	090506	0006_20090506_125808	Mendocino_line_transittest8	
	090506	0007_20090506_132816	Mendocino_line_transittest9	
	090506	0008_20090506_135807	Mendocino_line_transittest10	
	090506	0009_20090506_142811	Mendocino_line_transittest11	
	090506	0011_20090506_150014	Mendocino_line_transittest12	
	090506	0012_20090506_153037	Mendocino_line_transittest13	
	090506	0013_20090506_160035	Mendocino_line_transittest14	
	090506	0014_20090506_163044	Mendocino_line_transittest15	
	090506	0015_20090506_170035	Mendocino_line_transittest16	
	090506	0016_20090506_173042	Mendocino_line_transittest17	
	090506	0017_20090506_180042	Mendocino_line_transittest3	testing @4200 m
127	090507	0018_20090507_000012	Mendocino_line_transittest18	
127	090507	0019_20090507_003006	Mendocino_line_transittest19	
127	090507	0020_20090507_010011	Mendocino_line_transittest20	
127	090507	0021_20090507_024245	Mendocino_line_transittest21	
127	090507	0022_20090507_031238	Mendocino_line_transittest22	
127	090507	0023_20090507_034243	Mendocino_line_transittest23	
127	090507	0024_20090507_041241	Mendocino_line_transittest24	
127	090507	0026_20090507_051244	Mendocino_line_transittest26	
127	090507	0027_20090507_054245	Mendocino_line_transittest27	
127	090507	0028_20090507_065431	Mendocino_line_transittest28	
127	090507	0029_20090507_072429	Mendocino_line_transittest29	
127	090507	0030_20090507_07543	Mendocino_line_transittest30	
127	090507	0031_20090507_082435	Mendocino_line_transittest31	
127	090507	0032_20090507_085431	Mendocino_line_transittest32	
127	090507	0033_20090507_092433	Mendocino_line_transittest33	
127	090507	0034_20090507_095428	Mendocino_line_transittest34	
127	090507	0035_20090507_102433	Mendocino_line_transittest35	
127	090507	0036_20090507_105429	Mendocino_line_transittest36	
127	090507	0037_20090507_112428	Mendocino_line_transittest37	
127	090507	0038_20090507_115436	Mendocino_line_transittest38	
127	090507	0039_20090507_122436	Mendocino_line_transittest39	
127	090507	0040_20090507_125436	Mendocino_line_transittest40	
127	090507	0041_20090507_132438	Mendocino_line_transittest41	
127	090507	0042_20090507_135429	Mendocino_line_transittest42	
127	090507	0043_20090507_142430	Mendocino_line_transittest43	
127	090507	0044_20090507_145430	Mendocino_line_transittest44	
127	090507	0045_20090507_152458	Mendocino_line_transittest45	
127	090507	0046_20090507_154751	Mendocino_line_transittest46	
127	090507	0047_20090507_161844	Mendocino_line_transittest47	
127	090507	0048_20090507_170603	Mendocino_line_transittest48	

Table 3. Conversion table of NOAA raw.all file names to UNH filenames by Julian Day

Table 3 continued

JD	Data	NOAA file name	UNH file name	Neder
	Folder	.all	raw.all	Inotes
127	090507	0049_20090507_173611	Mendocino_line_transittest49	
127	090507	0050_20090507_180605	Mendocino_line_transittest50	
127	090507	0001_20090507_235441	Mendocino_line_1	Start of dipline
128	090508	0002_20090508_003116	Mendocino_line_2	dipline
128	090508	0003_20090508_012230	Mendocino_line_3	too small to process
128	090508	0004_20090508_012414	Mendocino_line_4	too small to process
128	090508	0005_20090508_012928	Mendocino_line_5	too small to process
128	090508	0006_20090508_013106	Mendocino_line_6	Dipline on basalt
128	090508	0007_20090508_033213	Mendocino_line_7	turn
128	090508	0008_20090508_034359	Mendocino_line_8	transit to start W-E
128	090508	0009_20090508_051019	Mendocino_line_9	continued
128	090508	00010_20090508_053655	Mendocino_line_10	turn
128	090508	00011_20090508_054833	Mendocino_line_11	first long W-E line
128	090508	00012_20090508_192137	Mendocino_line_12	cont. east
129	090509	0013_20090509_000325	Mendocino_line_13	turn
129	090509	0014_20090509_010705	Mendocino_line_14	turn
129	090509	0015_20090509_011147	Mendocino_line_15	turn
129	090509	0016_20090509_012944	Mendocino_line_16	turn
129	090509	0017_20090509_013559	Mendocino_line_17	first long E-W line
129	090509	0018_20090509_060208	Mendocino_line_18	continue west
129	090509	0019_20090509_120047	Mendocino_line_19	continue west
129	090509	0020_20090509_180008	Mendocino_line_20	eol W line-bad data
129	090509	0021_20090509_201225	Mendocino_line_21	transit to next line
129	090509	0022_20090509_204106	Mendocino_line_22	sol E line
130	090510	0023_20090510_000013	Mendocino_line_23	continue E refract
130	090510	0024_20090510_055945	Mendocino_line_24	continue E refract
130	090510	0025_20090510_120039	Mendocino_line_25	continue E
130	090510	0026_20090510_190520	Mendocino_line_26	continue E
131	090511	0027_20090511_000008	Mendocino_line_27	end of E line
131	090511	0028_20090511_020059	Mendocino_line_28	start of W line
131	090511	0029_20090511_055916	Mendocino_line_29	end of W line
131	090511	0030_20090511_085731	Mendocino_line_30	transit to Eureka
131	090511	0031_20090511_090915	Mendocino_line_31	transit to Eureka
131	090511	0032_20090511_170641	Mendocino_line_32	transit back to survey
100	000510	0000 0000510 01100/		
132	090512	0033_20090512_011826	Mendocino_line_33	start of W line
132	090512	0034_20090512_042941	Mendocino_line_34	cont. W
132	090512	0035_20090512_061609	Mendocino_line_35	cont. W
132	090512	0030_20090512_120514	Mandaaira lina 27	cont. W
132	090512	003/_20090512_141846	Mandaaira lina 29	cont. W
132	090512	0020 20000512 162850	Mandaaira lina 20	cont. w
132	090512	0039_20090512_162859	Mondocino_line_39	testing in palacies
132	090512	0040_20090512_102859	Mandacina line 40	testing in pelagics
132	090312	0041_20090312_102639	Mandaging ling 42	resulting in peragics
132	070312	0042_20070312_203032	wiendochio_nne_42	Tactuack test
1	1			

Table 3 continued

JD	Data	NOAA file name	UNH file name	Notos
	Folder	.all	raw.all	INOLES
133	090513	0043_20090513_002209	Mendocino_line_43	Mapping in E
133	090513	0044_20090513_002209	Mendocino_line_44	turn
133	090513	0045_20090513_002209	Mendocino_line_45	turn
133	090513	0046_20090513_002209	Mendocino_line_46	Mapping in E
			No line 47	
133	090513	0048_20090513_123503	Mendocino_line_48	Mapping in E
134	090514	0010_20090514_112351	Mendocino_line_49	Mapping W
134	090514	0003_20090514_025216	Mendocino_line_50	N-S slope line
134	090514	0009_20090514_091151	Mendocino_line_51	N-S slope line
134	090514	0011_20090514_180447	Mendocino_line_52	Mapping W
135	090515	0012_20090515_000015	Mendocino_line_53	Mapping W
135	090515	0013_20090515_023546	Mendocino_line_54	racetrack test
135	090515	0013_20090515_030157	Mendocino_line_55	racetrack test
135	090515	0014_20090515_031323	Mendocino_line_56	racetrack test
135	090515	0015_20090515_063334	Mendocino_line_57	turn
135	090515	0016_20090515_064617	Mendocino_line_58	racetrack test
135	090515	0017_20090515_092307	Mendocino_line_59	racetrack test
135	090515	0018_20090515_101056	Mendocino_line_60	racetrack test
135	090515	0019_20090515_130644	Mendocino_line_61	racetrack test
135	090515	0021_20090515_165556	Mendocino_line_62	transit to patch test
135	090515	0000_20090515_191444	Mendocino_line_63	N-S pitch patch test
135	090515	0002_20090515_214344	Mendocino_line_64	S-N pitch patch fast
136	090516	0002_20090516_003212	Mendocino_line_65	S-N pitch patch slow
136	090516	0006_20090516_031834	Mendocino_line_66	turn
136	090516	0007_20090516_053927	Mendocino_line_67	mapping to E
136	090516	0008_20090516_074820	Mendocino_line_68	mapping to E
136	090516	0009_20090516_093928	Mendocino_line_69	mapping to E
136	090516	0024_20090516_221307	Mendocino_line_70	mapping to E
137	090517	0025_20090517_000658	Mendocino_line_71	end mapping to E
137	090517	0026_20090517_041836	Mendocino_line_72	transit south
137	090517	0027_20090517_053615	Mendocino_line_73	testing
137	090517	0028_20090517_064402	Mendocino_line_74	testing
137	090517	0029_20090517_064431	Mendocino_line_75	includes a turn
137	090517	0030_20090517_072637	Mendocino_line_76	to Eureka
137	090517	0031_20090517_084659	Mendocino_line_77	includes a turn
137	090517	0032_20090517_085545	Mendocino_line_78	to Eureka
137	090517	0033_20090517_104320	Mendocino_line_79	to Eureka
137	090517	0034_20090517_105327	Mendocino_line_80	testing
137	090517	0035_20090517_110103	Mendocino_line_81	shelf to SE corner
137	090517	0036_20090517_184519	Mendocino_line_82	transit to SE corner
137	090517	0037_20090517_202019	Mendocino_line_83	Begin line to west
	0000			
138	090518	0038_20090518_000046	Mendocino_line_84	continuing west
138	090518	0039_20090518_040031	Mendocino_line_85	continuing west
138	090518	0040_20090518_131111	Mendocino_line_86	continuing west
138	090518	0041 20090518 185823	Mendocino_line_87	continuing west

Table 3 continued

JD	Data	NOAA file name	UNH file name	Notos
	Folder	.all	raw.all	Inotes
139	090519	0042_20090519_000000	Mendocino_line_88	end west
139	090519	0043_20090519_033348	Mendocino_line_89	turn
139	090519	0044_20090519_034645	Mendocino_line_90	east
139	090519	0045_20090519_060015	Mendocino_line_91	east
139	090519	0046_20090519_083912	Mendocino_line_92	east
139	090519	0047_20090519_091202	Mendocino_line_93	east
139	090519	0048_20090519_095208	Mendocino_line_94	east
139	090519	0049_20090519_170303	Mendocino_line_95	east
139	090519	0051_20090519_185115	Mendocino_line_96	east
139	090519	0052_20090519_220151	Mendocino_line_97	south transit
139	090519	0054_20090519_225319	Mendocino_line_98	west
140	090520	0055_20090520_000204	Mendocino_line_99	west
140	090520	0056_20090520_060012	Mendocino_line_100	east
140	090520	0059_20090520_125021	Mendocino_line_101	east
140	090520	0060_20090520_162827	Mendocino_line_102	east
140	090520	0061_20090520_181432	Mendocino_line_103	west
140	090520	0063_20090520_230147	Mendocino_line_104	west
141	090521	0064_20090521_000743	Mendocino_line_105	last line in East
141	090521	0065_20090521_014531	Mendocino_line_106	first line in West
141	090521	0066_20090521_060405	Mendocino_line_107	mapping west
141	090521	0067_20090521_121020	Mendocino_line_108	mapping west
141	090521	0068_20090521_180003	Mendocino_line_109	mapping west
141	090521	0070_20090521_185321	Mendocino_line_110	mapping west
141	090521	0071_20090521_211534	Mendocino_line_111	extinction line
142	090522	0072_20090522_000005	Mendocino_line_111a	extinction line
142	090522	0072_20090522_000005	Mendocino_line_111b	
142	090522	0075_20090522_060032	Mendocino_line_112	mapping east
142	090522	0076_20090522_083257	Mendocino_line_113	mapping east
142	090522	0077_20090522_120029	Mendocino_line_114	mapping east
142	090522	0078_20090522_180125	Mendocino_line_115	mapping east
143	090523	0079_20090523_000030	Mendocino_line_116	mapping east
143	090523	0081_20090523_064917	Mendocino_line_117	mapping west
143	090523	0082_20090523_120513	Mendocino_line_118	mapping west
143	090523	0083_20090523_182047	Mendocino_line_119	mapping west
143	090523	0084_20090523_182047	Mendocino_line_119	mapping west
143	090523	0085_20090523_234624	Mendocino_line_120	mapping east
144	090524	0086_20090524_060206	Mendocino_line_121	mapping east
144	090524	0087_20090524_060206	Mendocino_line_122	mapping east
		END OF CRUISE	END OF CRUISE	

XBT number	Latitude N	Longitude W
1	38.503792	-125.468180
2	40.027510	-130.291178
3	40.341730	-130.258886
4	40.348570	-129.052897
5	40.355334	-127.879020
6	40.406570	-126.784537
7	40.400750	-127.811637
8	40.393470	-129.047265
9	40.385986	-130.307487
10	40.434261	-129.673877
11	40.441100	-128.508520
12	40.448377	-127.236198
13	40.455611	-125.990788
14	40.371712	-124.791423
15	40.368780	-125.375140
16	40.365560	-126.003890
17	40.548645	-125.344824
18	40.416305	-124.788119
19	40.404690	-124.479790
20	40.392850	-126.522499
21	40.223718	-128.347917
22	40.339413	-127.148145
23	40.303646	-126.074740
24	40.309713	-124.799854
25	40.308529	-125.110221
26	40.304578	-126.299105
27	40.300553	-127.511361
28	40.267582	-128.325049
29	40.416895	-128.057927
30	40.416895	-128.001888
31	40.526445	-127.717953
32	40.513505	-126.630176
33	40.513505	-125.531169
34	45.799800	-125.763330
35	40.529802	-125.023226
36	40.334066	-125.011589
37	40.348071	-124.722884
38	40.260083	-125.700326
39	40.252271	-126.876725
40	40.248324	-128.121973

 Table 4. Location of XBT cast

Table 4 continued

XBT number	Latitude N	Longitude W
41	40.247331	-128.721794
42	40.256608	-129.950033
43	40.290629	-129.826205
44	40.295520	-128.764160
45	40.344531	-127.819385
46	40.201461	-127.760400
47	40.201461	-127.760400
48	40.208570	-128.909994
49	40.177616	-129.859131
50	40.128422	-129.419108
52	40.219360	-130.401042
53	40.150134	-131.634684
54	40.070418	-132.907536
56	39.991150	-134.172233
59	39.711829	-135.432080
60	39.931714	-134.867529
61	40.084078	-133.672656
64	40.220060	-131.327588
65	40.333057	-130.507357
66	40.262162	-131.752979
67	40.190780	-133.005713
68	40.187976	-133.665706
69	40.237581	-132.878304
70	40.314962	-131.648926

Table 5. Cruise Statistics

Dates	JD125 to JD245
Weather delays	0 days
Total non-mapping days (transits)	5 days
Total mapping days	8.5 days
Line kilometers of survey	6028 km
Total Mendocino Ridge area mapped 14,1	36 km ² (5458 mi ²)
Beginning draft 4.81 m (b	ow) 4.49 m (stern)
Ending draft	m
Average ship speed for survey	8.0 kts

Figure 20. Map of locations of XBT (white dots). Backdrop is the newly acquired bathymetry. See Table 4 for details.

May 2009

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
JD123 <mark>3</mark>	JD124 4	^{JD125} 5 depart San Francisco, Ca 1515L	^{JD126} 6 transit to Mendocino	JD127 transit & CTD/XBT test start mapping Line 11	JD128 8 mapping in east half	JD129 9 mapping in east half
JD130 10 mapping in east half transit to Eureka, CA	JD131 11 pick up KM engineer testing & mapping	JD132 12 mapping in East & testing	^{JD133} 13 EM302 died testing all day	^{JD134} 14 mapping in East testing	JD135 15 mapping in East testing	^{JD136} 16 mapping in East & testing
JD137 17 transit to Eureka, CA drop-off	^{JD138} 18 mappingin East	^{JD288} 19 mappingin East	JD139 finished mapping in East moved to West	^{JD140} 21 mapping in West	JD141 22 mapping in West	^{JD142} 23 mapping in West
^{JD143} 24 ended mapping in West headed to SF	^{JD144} 25 transit to SF	^{JD145} 26 arrive San Francisco, Ca 1000L	^{JD14} 27	^{JD147} 28	^{JD148} 29	^{JD149} 30
^{JD150} 31						

Appendix 2. Cruise Personnel

