1,772 research outputs found

    Zwitterionic Character and Lipid Composition Determine the Behaviour of Glycosylphosphatidylinositol Fragments in Monolayers

    Get PDF
    Glycosylphosphatidylinositols (GPIs) are complex glycolipids found in free form or anchoring proteins to the outer leaflet of the cell membrane in eukaryotes. GPIs have been associated with the formation of lipid rafts and protein sorting on membranes. The presence of a conserved glycan core with cell-specific modifications together with lipid remodelling during biosynthesis suggest that the properties of the glycolipids are being fine-tuned. We synthesized a series of GPI fragments and evaluated the interactions and arrangement of these glycolipids in monolayers as a 2-D membrane model. GIXD and IRRAS analyses showed the need of N-acetylglucosamine deacetylation for the formation of hydrogen bonds to obtain highly structured domains in the monolayers and an effect of the unsaturated lipids in formation and localization of the glycolipids within or between membrane microdomains. These results contribute to understand the role of these glycolipids and their modifications in the organization of membranes

    Rescue of Glycosylphosphatidylinositol-Anchored Protein Biosynthesis Using Synthetic Glycosylphosphatidylinositol Oligosaccharides

    Get PDF
    The attachment of proteins to the cell membrane using a glycosylphosphatidylinositol (GPI) anchor is a ubiquitous process in eukaryotic cells. Deficiencies in the biosynthesis of GPIs and the concomitant production of GPI-anchored proteins lead to a series of rare and complicated disorders associated with inherited GPI deficiencies (IGDs) in humans. Currently, there is no treatment for patients suffering from IGDs. Here, we report the design, synthesis, and use of GPI fragments to rescue the biosynthesis of GPI-anchored proteins (GPI-APs) caused by mutation in genes involved in the assembly of GPI-glycolipids in cells. We demonstrated that the synthetic fragments GlcNAc-PI (1), Man-GlcN-PI (5), and GlcN-PI with two (3) and three lipid chains (4) rescue the deletion of the GPI biosynthesis in cells devoid of the PIGA, PIGL, and PIGW genes in vitro. The compounds allowed for concentration-dependent recovery of GPI biosynthesis and were highly active on the cytoplasmic face of the endoplasmic reticulum membrane. These synthetic molecules are leads for the development of treatments for IGDs and tools to study GPI-AP biosynthesis

    Electronic structure of Pr2MnNiO6 from x-ray photoemission, absorption and density functional theory

    Full text link
    The electronic structure of double perovskite Pr2MnNiO6 is studied using core x-ray photoelectron spectroscopy and x-ray absorption spectroscopy. The 2p x-ray absorption spectra show that Mn and Ni are in 2+ and 4+ states respectively. Using charge transfer multiplet analysis of Ni and Mn 2p XPS spectra, we find charge transfer energies {\Delta} of 3.5 and 2.5 eV for Ni and Mn respectively. The ground state of Ni2+ and Mn4+ reveal a higher d electron count of 8.21 and 3.38 respectively as compared to the atomic values of 8.00 and 3.00 respectively thereby indicating the covalent nature of the system. The O 1s edge absorption spectra reveal a band gap of 0.9 eV which is comparable to the value obtained from first principle calculations for U-J >= 2 eV. The density of states clearly reveal a strong p-d type charge transfer character of the system, with band gap proportional to average charge transfer energy of Ni2+ and Mn4+ ions.Comment: 18 pages, 9 figure

    Prognostic Impact of Pattern of Mandibular Involvement in Gingivo-Buccal Complex Squamous Cell Carcinomas:Marrow and Mandibular Canal Staging System

    Get PDF
    PURPOSE: To study the pattern of mandibular involvement and its impact on oncologic outcomes in patients with gingivo-buccal complex squamous cell carcinoma (GBC-SCC) and propose a staging system based on the pattern of bone involvement (MMC: Marrow and mandibular canal staging system) and compare its performance with the 8th edition of the American Joint Committee on Cancer (AJCC8). METHODS: This retrospective observational study included treatment-naïve GBC-SCC patients who underwent preoperative computed tomography (CT) imaging between January 1, 2012, and March 31, 2016, at a tertiary care cancer center. Patients with T4b disease with high infratemporal fossa involvement, maxillary erosion, and follow-up of less than a year were excluded. The chi-square or Fisher’s exact test was used for descriptive analysis. Kaplan–Meier estimate and log-rank test were performed for survival analysis. Multivariate analysis was done using Cox regression analysis after making adjustments for other prognostic factors. p-Value <0.05 was considered as significant. Based upon the survival analysis with different patterns of bone invasion, a new staging system was proposed “MMC: Marrow and mandibular canal staging system”. “Akaike information criterion” (AIC) was used to study the relative fitted model of the various staging (TNM staging—AJCC8) with respect to survival parameters. RESULTS: A total of 1,200 patients were screened; 303 patients were included in the study. On radiology review, mandibular bone was involved in 62% of patients. The pattern of bone involvement was as follows: deep cortical bone erosion (DCBE) in 23%, marrow in 34%, and marrow with the mandibular canal in 43% of patients. Patients with DCBE and no bone involvement (including superficial cortical) had similar survival [disease-free survival (DFS) and locoregional recurrence-free survival (LRRFS)], and this was significantly better than those with marrow with or without mandibular canal involvement (for both DFS and LRRFS). Patients with DCBE were staged using the MMC, and when compared with the AJCC8, the MMC system was better for the prediction of survival outcomes, as AIC values were lower compared with those of the AJCC8. There was a significant association (p = 0.013) between the type of bone involvement and the pattern of recurrence. CONCLUSIONS: For GBC-SCC, only marrow with or without mandibular canal involvement is associated with poorer survival outcomes. As compared with the AJCC8, the proposed Mahajan et al. MMC staging system downstages DCBE correlates better with survival outcomes

    Cytopathology Using High Resolution Digital Holographic Microscopy

    Get PDF
    We summarize a study involving simultaneous imaging of cervical cells from Pap-smear samples using bright-field and quantitative phase microscopy. The optimization approach to phase reconstruction used in our study enables full diffraction limited performance from single-shot holograms and is thus suitable for reducing cost of a quantitative phase microscope system. Over 48000 cervical cells from patient samples obtained from three clinical sites have been imaged in this study. The clinical sites used different sample preparation methodologies and the subjects represented a range of age groups and geographical diversity. Visual examination of quantitative phase images of cervical cell nuclei show distinct morphological features that we believe have not appeared in the prior literature. A PCA based analysis of numerical parameters derived from the bright-field and quantitative phase images of the cervical cells shows good separation of superficial, intermediate and abnormal cells. The distribution of phase based parameters of normal cells is also shown to be highly overlapping among different patients from the same clinical site, patients across different clinical sites and for two age groups (below and above 30 years), thus suggesting robustness and possibility of standardization of quantitative phase as an imaging modality for cell classification in future clinical usage

    Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L.

    Get PDF
    Biochemical changes in the plants of Pistia stratiotes L., a free floating macrophyte exposed to different concentrations of hexavalent chromium (0, 10, 40, 60, 80 and 160 μM) for 48, 96 and 144 h were studied. Chromium-induced oxidative stress in macrophyte was investigated using the multivariate modeling approaches. Cluster analysis rendered two fairly distinct clusters (roots and shoots) of similar characteristics in terms of their biochemical responses. Discriminant analysis identified ascorbate peroxidase (APX) as discriminating variable between the root and shoot tissues. Principal components analysis results suggested that malondialdehyde (MDA), superoxide dismutase (SOD), APX, non-protein thiols (NP-SH), cysteine, ascorbic acid, and Cr-accumulation are dominant in root tissues, whereas, protein and guaiacol peroxidase (GPX) in shoots of the plant. Discriminant partial least squares analysis results further confirmed that MDA, SOD, NP-SH, cysteine, GPX, APX, ascorbic acid and Cr-accumulation dominated in the root tissues, while protein in the shoot. Three-way analysis helped in visualizing simultaneous influence of metal concentration and exposure duration on biochemical variables in plant tissues. The multivariate approaches, thus, allowed for the interpretation of the induced biochemical changes in the plant tissues exposed to chromium, which otherwise using the conventional approaches is difficult

    BioSimulators: a central registry of simulation engines and services for recommending specific tools

    Get PDF
    Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore