6 research outputs found

    Sequence-selective DNA recognition and enhanced cellular up-take by peptideā€“steroid conjugates

    Get PDF
    Several GCN4 bZIP TF models have previously been designed and synthesized. However, the synthetic routes towards these constructs are typically tedious and difficult. We here describe the substitution of the Leucine zipper domain of the protein by a deoxycholic acid derivative appending the two GCN4 binding region peptides through an optimized double azideā€“alkyne cycloaddition click reaction. In addition to achieving sequence specific dsDNA binding, we have investigated the potential of these compounds to enter cells. Confocal microscopy and flow cytometry show the beneficial influence of the steroid on cell uptake. This unique synthetic model of the bZIP TF thus combines sequence specific dsDNA binding properties with enhanced cell-uptake. Given the unique properties of deoxycholic acid and the convergent nature of the synthesis, we believe this work represents a key achievement in the field of TF mimicry

    A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids

    Get PDF
    Accessing the nucleus through the surrounding membrane poses one of the major obstacles for therapeutic molecules large enough to be excluded due to nuclear pore size limits. In some therapeutic applications the large size of some nucleic acids, like plasmid DNA, hampers their access to the nuclear compartment. However, also for small oligonucleotides, achieving higher nuclear concentrations could be of great benefit. We report on the synthesis and possible applications of a natural RNA 5ā€²-end nuclear localization signal composed of a 2,2,7-trimethylguanosine cap (m3G-CAP). The cap is found in the small nuclear RNAs that are constitutive part of the small nuclear ribonucleoprotein complexes involved in nuclear splicing. We demonstrate the use of the m3G signal as an adaptor that can be attached to different oligonucleotides, thereby conferring nuclear targeting capabilities with capacity to transport large-size cargo molecules. The synthetic capping of oligos interfering with splicing may have immediate clinical applications

    A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity

    Get PDF
    The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3ā€²-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity

    Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylamino)toluic Acid] (PATA) for Efficient Biotinylation of Peptides and Oligonucleotides

    No full text
    Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is Hüisgen dipolar [3+2]-cycloaddition, commonly referred to as “click chemistry”. As we reported recently, the activated triple bond donor p-(N-propynoylamino)toluic acid (PATA) gives excellent results when used for conjugations at submicromolar concentrations. Thus, we have designed and synthesized two biotin linkers, with different lengths equipped with this activated triple bond donor and we proceeded with biotinylation of oligonucleotides and C-myc peptide both in solution and on solid support with excellent yields of conversion
    corecore