20 research outputs found

    A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration

    Get PDF
    How cells move chemotactically remains a major unmet challenge in cell biology. Emerging evidences indicate that for interpreting noisy, shallow gradients of soluble cues a system must behave as an excitable process. Here, through an RNAi-based, high-content screening approach, we identify RAB35 as necessary for the formation of growth factors (GFs)-induced waves of Circular Dorsal Ruffles (CDRs), apically restricted actin-rich migratory protrusions. RAB35 is sufficient to induce recurrent and polarized CDRs that travel as propagating waves, thus behaving as an excitable system that can be biased to control cell steering. Consistently, RAB35 is essential for promoting directed chemotactic migration and chemoinvasion of various cells in response to gradients of motogenic GFs. Molecularly, RAB35 does so by directly regulating the activity of p85/PI3K polarity axis. We propose that RAB35 is a molecular determinant for the control of an excitable, oscillatory system that acts as steering wheel for GF-mediated chemotaxis and chemoinvasion

    Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion

    No full text
    Collective cell migration is a widespread biological phenomenon, whereby groups of highly coordinated, adherent cells move in a polarized fashion [1, 2]. This migration mode is a hallmark of tissue morphogenesis during development and repair and of solid tumor dissemination [1]. In addition to circulating as solitary cells, lymphoid malignancies can assemble into tissues as multicellular aggregates [3]. Whether malignant lymphocytes are capable of coordinating their motility in the context of chemokine gradients is, however, unknown. Here, we show that, upon exposure to CCL19 or CXCL12 gradients, malignant B and T lymphocytes assemble into clusters that migrate directionally and display a wider chemotactic sensitivity than individual cells. Physical modeling recapitulates cluster motility statistics and shows that intracluster cell cohesion results in noise reduction and enhanced directionality. Quantitative image analysis reveals that cluster migration runs are periodically interrupted by transitory rotation and random phases that favor leader cell turnover. Additionally, internalization of CCR7 in leader cells is accompanied by protrusion retraction, loss of polarity, and the ensuing replacement by new leader cells. These mechanisms ensure sustained forward migration and resistance to chemorepulsion, a behavior of individual cells exposed to steep CCL19 gradients that depends on CCR7 endocytosis. Thus, coordinated cluster dynamics confer distinct chemotactic properties, highlighting unexpected features of lymphoid cell migration

    Wiskott-Aldrich syndrome protein controls antigen-presenting cell-driven CD4+ T-cell motility by regulating adhesion to intercellular adhesion molecule-1

    No full text
    International audienceT-cell scanning for antigen-presenting cells (APC) is a finely tuned process. Whereas non-cognate APC trigger T-cell motility via chemokines and intercellular adhesion molecule-1 (ICAM-1), cognate APC deliver a stop signal resulting from antigen recognition. We tested in vitro the contribution of the actin cytoskeleton regulator Wiskott-Aldrich syndrome protein (WASP) to the scanning activity of primary human CD4(+) T cells. WASP knock-down resulted in increased T-cell motility upon encounter with non-cognate dendritic cells or B cells and reduced capacity to stop following antigen recognition. The high motility of WASP-deficient T cells was accompanied by a diminished ability to round up and to stabilize pauses. WASP-deficient T cells migrated in a normal proportion towards CXCL12, CCL19 and CCL21, but displayed an increased adhesion and elongation on ICAM-1. The elongated morphology of WASP-deficient T cells was related to a reduced confinement of high-affinity lymphocyte function-associated antigen 1 to the mid-cell zone. Our data therefore indicate that WASP controls CD4(+) T-cell motility upon APC encounter by regulating lymphocyte function-associated antigen 1 spatial distribution

    CIP4 controls CCL19-driven cell steering and chemotaxis in chronic lymphocytic leukemia

    No full text
    Solid tumor dissemination relies on the reprogramming of molecular pathways controlling chemotaxis. Whether the motility of non-solid tumors such as leukemia depends on the deregulated expression of molecules decoding chemotactic signals remains an open question. We identify here the membrane remodeling F-BAR adapter protein CIP4 as a key regulator of chemotaxis in chronic lymphocytic leukemia (CLL). CIP4 is expressed at abnormally high levels in CLL cells where it is required for CCL19-induced chemotaxis. Upon CCL19 stimulation of CLL cells, CIP4 associates with GTP-bound Cdc42 and is recruited to the rear of the lamellipodium and along microspikes radiating through the lamellipodium. Consistent with its cellular distribution, CIP4 removal impairs both the assembly of the polarized lamellipodium and directional migration along a diffusible CCL19 gradient. Furthermore, CIP4 depletion results in decreased activation of WASP, but increased activation of PAK1 and p38 MAPK. Notably, p38 MAPK inhibition results in impaired lamellipodium assembly and loss of directional migration. This suggests that CIP4 modulates both the WASP and p38 MAPK pathways to promote lamellipodium assembly and chemotaxis. Overall, our study reveals a critical role of CIP4 in mediating chemotaxis of CLL cells, by controlling the dynamics of microspike-containing protrusions and cell steering

    Small molecule inhibitors of Apaf-1-related caspase-3/-9 activation that control mitochondrial-dependent apoptosis

    Get PDF
    10 pages, 5 figures.-- PMID: 16341125 [PubMed].-- Available online Dec 9, 2005.Supporting information available at: http://www.nature.com/cdd/journal/v13/n9/suppinfo/4401828s1.html?url=/cdd/journal/v13/n9/abs/4401828a.htmlApoptosis is a biological process relevant to human disease states that is strongly regulated through protein–protein complex formation. These complexes represent interesting points of chemical intervention for the development of molecules that could modulate cellular apoptosis. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9 that link mitochondria disfunction with activation of the effector caspases and in turn is of interest for the development of apoptotic modulators. In the present study we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library. The active compounds rescued from the library were chemically optimised to obtain molecules that bind to both recombinant and human endogenous Apaf-1 in a cytochrome c-noncompetitive mechanism that inhibits the recruitment of procaspase-9 by the apoptosome. These newly identified Apaf-1 ligands decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.This work was supported by grants from Spanish Ministry of Science and Techonology (SAF2001-2811, SAF2001-2286 and BIO2004-998), Fundación Areces and Fundación Valenciana de Investigaciones Biomédicas.Peer reviewe
    corecore