160 research outputs found
On Abstraction-Based Controller Design With Output Feedback
We consider abstraction-based design of output-feedback controllers for
dynamical systems with a finite set of inputs and outputs against
specifications in linear-time temporal logic. The usual procedure for
abstraction-based controller design (ABCD) first constructs a finite-state
abstraction of the underlying dynamical system, and second, uses reactive
synthesis techniques to compute an abstract state-feedback controller on the
abstraction. In this context, our contribution is two-fold: (I) we define a
suitable relation between the original system and its abstraction which
characterizes the soundness and completeness conditions for an abstract
state-feedback controller to be refined to a concrete output-feedback
controller for the original system, and (II) we provide an algorithm to compute
a sound finite-state abstraction fulfilling this relation.
Our relation generalizes feedback-refinement relations from ABCD with
state-feedback. Our algorithm for constructing sound finite-state abstractions
is inspired by the simultaneous reachability and bisimulation minimization
algorithm of Lee and Yannakakis. We lift their idea to the computation of an
observation-equivalent system and show how sound abstractions can be obtained
by stopping this algorithm at any point. Additionally, our new algorithm
produces a realization of the topological closure of the input/output behavior
of the original system if it is finite-state realizable
Active Control of Acoustic Field-of-View in a Biosonar System
Echolocating bats can actively change the area scanned by their biosonar sensory system (âfield of viewâ), and they do so according to the complexity of the environment and depending on the distance to the target
Parametric Identification of Temporal Properties
Given a dense-time real-valued signal and a parameterized temporal logic formula with both magnitude and timing parameters, we compute the subset of the parameter space that renders the formula satisfied by the trace. We provide two preliminary implementations, one which follows the exact semantics and attempts to compute the validity domain by quantifier elimination in linear arithmetics and one which conducts adaptive search in the parameter space
Verification and Control of Turn-Based Probabilistic Real-Time Games
Quantitative verification techniques have been developed for the formal analysis of a variety of probabilistic models, such as Markov chains, Markov decision process and their variants. They can be used to produce guarantees on quantitative aspects of system behaviour, for example safety, reliability and performance, or to help synthesise controllers that ensure such guarantees are met. We propose the model of turn-based probabilistic timed multi-player games, which incorporates probabilistic choice, real-time clocks and nondeterministic behaviour across multiple players. Building on the digital clocks approach for the simpler model of probabilistic timed automata, we show how to compute the key measures that underlie quantitative verification, namely the probability and expected cumulative price to reach a target. We illustrate this on case studies from computer security and task scheduling
Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor
<div><p>Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.</p></div
- âŠ